首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D Ruddlesden–Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)2(MA)n?1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and ∞ are systematically investigated. It is found that n–n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p–n junctions in the pure 2D and 3D scenarios (n = 1 and ∞). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open‐circuit voltage (Voc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the Voc to evidently increase by 94 mV. Capacitance–voltage measurements with Mott–Schottky analysis demonstrate that such Voc improvement is attributed to the enhanced potential at the interface.  相似文献   

2.
A comprehensive investigation of the electronic energy levels of an n = 2 Ruddlesden–Popper phase perovskite is presented. Ultraviolet and inverse photoemission spectroscopies are used to probe the density of states in the valence and conduction bands, respectively, of the quasi‐2D perovskite, butylammonium cesium lead iodide (BA2CsPb2I7). By comparing experimental spectra with calculated projected density of states, the contributions from Cs, Pb, and I to the quantum well states are identified, and distinguished from those of the organic ligand barrier layer. The ionization energy, electron affinity, and exciton binding energy of this material are derived. The energetics of the quantum well structure are discussed in terms of the number of Pb‐halide layers. The resulting energy diagram suggests that a type‐I heterojunction would be formed with the n = 1 BA2PbI4. Finally, surface photovoltage performed via Kelvin probe force microscopy is used to evaluate band bending at the surface of the BA2CsPb2I7 thin films.  相似文献   

3.
Recently, Ruddlesden–Popper perovskites (RPPs) have attracted increasing interests due to their promising stability. However, the efficiency of solar cells based on RPPs is much lower than that based on 3D perovskites, mainly attributed to their poor charge transport. Herein, a simple yet universal method for controlling the quality of RPP films by a synergistic effect of two additives in the precursor solution is presented. RPP films achieved by this method show (a) high quality with uniform morphology, enhanced crystallinity, and reduced density of sub‐bandgap states, (b) vertically oriented perovskite frameworks that facilitate efficient charge transport, and (c) type‐II band alignment that favors self‐driven charge separation. Consequently, a hysteresis‐free RPP solar cell with a power conversion efficiency exceeding 12%, which is much higher than that of the control device (1.5%), is achieved. The findings will spur new developments in the fabrication of high‐quality, aligned, and graded RPP films essential for realizing efficient and stable perovskite solar cells.  相似文献   

4.
2D Ruddlesden–Popper perovskites (RPPs) have emerged as a promising solar cell material. A group of novel RPPs with cyclohexane methylamine (CMA) as a spacer cation is presented. Unlike previously reported RPPs, the deposited films of (CMA)2(MA)n?1PbnI3n+1 (MA is CH3NH3+, n = 1, 2, 3, …) exhibit multiple phases with reverse‐graded quantum well (QW) distribution; small n (n = 2) RPPs are located at the surface and large n (n ≥ 10) RPPs at the bottom. This has three advantages: (a) The outer, more moisture resistant, small n RPPs create a stable barrier that protects the vulnerable large n RPP lattice from being attacked by water molecules. (b) It forms a type‐II band alignment between different phases, which favors self‐driven charge transport. (c) The natural structure of graded QWs expands the range of photon collection. Attributed to these properties, the best efficiency of 15.05%, with high open‐circuit voltage (Voc) of 1.10 V for a first‐generation solar cell containing (CMA)2(MA)8Pb9I28, is achieved. A notable enhancement in short wavelength is observed in the Incident photon‐to‐current conversion efficiency spectra. This device shows significantly improved long‐term stability, retaining ≈95% of the initial efficiency after 4600 h exposure in ambient conditions with 40–70% relative humidity.  相似文献   

5.
2D Ruddlesden–Popper perovskites (RPPs) have recently drawn significant attention because of their structural variability that can be used to tailor optoelectronic properties and improve the stability of derived photovoltaic devices. However, charge separation and transport in 2D perovskite solar cells (PSCs) suffer from quantum well barriers formed during the processing of perovskites. It is extremely difficult to manage phase distributions in 2D perovskites made from the stoichiometric mixtures of precursor solutions. Herein, a generally applicable guideline is demonstrated for precisely controlling phase purity and arrangement in RPP films. By visually presenting the critical colloidal formation of the single‐crystal precursor solution, coordination engineering is conducted with a rationally selected cosolvent to tune the colloidal properties. In nonpolar cosolvent media, the derived colloidal template enables RPP crystals to preferentially grow along the vertically ordered alignment with a narrow phase variation around a target value, resulting in efficient charge transport and extraction. As a result, a record‐high power conversion efficiency (PCE) of 14.68% is demonstrated for a (TEA)2(MA)2Pb3I10 (n = 3) photovoltaic device with negligible hysteresis. Remarkably, superior stability is achieved with 93% retainment of the initial efficiency after 500 h of unencapsulated operation in ambient air conditions.  相似文献   

6.
7.
8.
2D Ruddlesden–Popper (RP) perovskites have recently emerged as promising candidates for hybrid perovskite photovoltaic cells, realizing power‐conversion efficiencies (PCEs) of over 10% with technologically relevant stability. To achieve solar cell performance comparable to the state‐of‐the‐art 3D perovskite cells, it is highly desirable to increase the conductivity and lower the optical bandgap for enhanced near‐IR region absorption by increasing the perovskite slab thickness. Here, the use of the 2D higher member (n = 5) RP perovskite (n‐butyl‐NH3)2(MeNH3)4Pb5I16 in depositing highly oriented thin films from dimethylformamide/dimethylsulfoxide mixtures using the hot‐casting method is reported. In addition, they exhibit superior environmental stability over thin films of their 3D counterpart. These films are assembled into high‐efficiency solar cells with an open‐circuit voltage of ≈1 V and PCE of up to 10%. This is achieved by fine‐tuning the solvent ratio, crystal growth orientation, and grain size in the thin films. The enhanced performance of the optimized devices is ascribed to the growth of micrometer‐sized grains as opposed to more typically obtained nanometer grain size and highly crystalline, densely packed microstructures with the majority of the inorganic slabs preferentially aligned out of plane to the substrate, as confirmed by X‐ray diffraction and grazing‐incidence wide‐angle X‐ray scattering mapping.  相似文献   

9.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

10.
The highest certified power conversion efficiency (PCE) of black phase based CsPbI3 perovskite solar cells has exceeded 18%, and become a hotspot in recent progress. However, the black phase of CsPbI3 rapidly transforms to yellow phase in ambient conditions due to its thermodynamic instability. Here, a Ruddlesden–Popper 2D structure is introduced into γ‐CsPbI3 film to stabilize the black phase via reducing dimensionality. It is found that a judicious amount of phenylethylammonium iodide can adjust the dimensionality of γ‐CsPbI3 film from 2D to quasi‐2D and 3D phase. Comprehensive consideration to obtain both the stability and high PCE, quasi‐2D (n = 40) γ‐CsPbI3 delivers a reproducible PCE of 13.65% with negligible hysteresis. By utilizing femtosecond transient absorption and time‐resolved PL decay, similar carrier kinetics in n = 40 and ∞ samples are observed, meaning an efficient charge extraction. More importantly, when the device is placed at 80 °C in N2 condition or in air with RH of 25–30%, its PCE keeps ≈88% and ≈89% of its initial PCE after 12 days, respectively. Such results are better than the 3D one (≈69% and ≈16%, respectively).  相似文献   

11.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.  相似文献   

12.
Serious environmental problems, growing demand for energy, and the pursuit of environmental‐friendly, sustainable, and effective energy technologies to store and transform clean energy have all drawn great attention recently. As a part of the special issue “Energy Research in National Institute of Advanced Industrial Science and Technology (AIST)” this review systematically summarizes the research progress of metal–organic framework (MOF) composites and derivatives in energy applications, including catalytic CO oxidation, liquid‐phase chemical hydrogen storage, and electrochemical energy storage and conversion. Furthermore, the correlation between MOF‐based structures, synthetic strategies, and their corresponding performances is carefully discussed. The further scope and opportunities, expected improvements and challenges are also discussed. This review will not only benefit development of more feasible protocols to fabricate nanostructures for energy systems but also stimulate further interest in MOF composites and derivatives, for energy applications.  相似文献   

13.
14.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.  相似文献   

15.
This article addresses agricultural metabolism and transitions for energy, nitrogen, farm production, self‐sufficiency, and surplus from historical data since the nineteenth century. It builds on an empirical data set on agricultural production and production means in France covering 130 consecutive years (1882–2013). Agricultural transitions have increased the net production and surplus of farms by a factor of 4 and have zeroed self‐sufficiency. The energy consumption remained quasi‐stable since 1882, but the energy and nitrogen structure of agriculture fully changed. With an EROI (energy return to energy invested) of 2 until 1950, preindustrial agriculture consumed as much energy to function as it provided in exportable surplus to sustain the nonagricultural population. The EROI doubled to 4 over the last 60 years, driven, on the one hand, by efficiency improvements in traction through the replacement of draft animals by motors and, on the other hand, by the joint increase in crop yields and efficiency in nitrogen use. Agricultural energy and nitrogen transitions shifted France from a self‐sufficiency agri‐food‐energy regime to a fossil‐dependent food export regime. Knowledge of resource conversion mechanisms over the long duration highlights the effects of changing agricultural metabolism on the system's feeding capacity. Farm self‐sufficiency is an asset against fossil fuel constraints, price volatility, and greenhouse gas emissions, but it equates to lower farm surplus in support of urbanization.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号