首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.

Freezing lactic acid bacteria often leads to cell death and loss of technological properties. Our objective was to provide an in-depth characterization of the biophysical properties of the Lactobacillus delbrueckii subsp. bulgaricus membrane in relation to its freeze resistance. Freezing was represented as a combination of cold and osmotic stress. This work investigated the relative incidence of increasing sucrose concentrations coupled or not with subzero temperatures without ice nucleation on the biological and biophysical responses of two strains with different membrane fatty acid compositions and freeze resistances. Following exposure of bacterial cells to the highest sucrose concentration, the sensitive strain exhibited a survival rate of less than 10 % and 5 h of acidifying activity loss. Similar biological activity losses were observed upon freeze-thawing and after osmotic treatment for each strain thus highlighting osmotic stress as the main source of cryoinjury. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to membrane lipid organization characterized by FTIR spectroscopy. Both approaches made it possible to investigate the specific contributions of the membrane core and the bilayer external surface to cell degradation caused by cold and osmotic stress. Cold-induced membrane rigidification had no significant implication on bacterial freeze-thaw resistance. Interactions between extracellular sucrose and membrane phospholipid headgroups under osmotic stress were also observed. Such interactions were more evident in the sensitive strain and when increasing sucrose concentration, thus suggesting membrane permeabilization. The relevance of biophysical properties for elucidating mechanisms of cryoinjury and cryoprotection is discussed.

  相似文献   

2.
Electron spin resonance (ESR) spin label methods were used to study membrane fluidity of Chinese hamster ovary (CHO) cells grown on microcarriers and in suspension using 5-doxylstearic acid spin label as a probe. CHO cells grown on microcarriers had a more rigid cell membrane compared to CHO cells grown in suspension culture. CHO cells removed from the surface of the microcarriers by either trypsinization, EDTA treatment or osmotic shock had a membrane fluidity similar to that of CHO cells grown in suspension culture. Conversely, when the cells grown in suspension culture were attached and flattened on the surface of the microcarriers the fluidity decreased. Moreover, membrane fluidity of CHO cells grown on microcarriers changed as a function of the population density, whereas that of the cells in suspension did not. This implies that cell adhesion and/or cell-cell interactions influence the fluidity of the cell surface membrane.  相似文献   

3.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

4.
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.  相似文献   

5.
The survival of Bradyrhizobium japonicum under hyperosmotic treatments achieved at various temperatures was investigated. The bacterial viability was measured at a combination of different levels of osmotic pressure (1.4–49.2 MPa) in glycerol solutions and temperature (4–28°C). Viability was dependent on these two variables, with low temperatures (10 and 4°C) exhibiting a protective effect against exposure to high levels of osmotic pressure. To understand these results, the relation between membrane physical state and structure of whole cells and osmotic shock tolerance of B. japonicum was studied. Membrane physical changes were evaluated by using 1,3-diphenyl-1,3,5-hexatriene (DPH) and Laurdan (6-dodecanoil-2-dimethylaminonaphtelene) as probes. The results showed that the membrane of B. japonicum was subjected to a progressive phase transition from the liquid-crystalline to the gel phase during cooling between 28 and 4°C. Accordingly, under isotonic conditions, the Laurdan GP spectra showed that, in the range 12–28°C, membrane lipids were in the liquid-crystalline phase, and in a gel phase at 4°C. The study of the variation in anisotropy of DPH revealed that cooling cells before the hyperosmotic treatment could induce opposite effects to the fluidizing effect of the hyperosmotic shock. Cell resistance was finally related to modifications of the membrane structure depending on combined effects of cooling and dehydration.  相似文献   

6.
In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria.  相似文献   

7.
The thermotropic transitions of the plasma membrane and tonoplastfrom cultured cells of chilling-sensitive (CS) and chilling-insensitive(CI) strains of rice (Oryza sativa L.) were analyzed by monitoringthe fluorescence polarization of an embedded fluorophore, 1,6-diphenyl-1,3,5-hexatriene(DPH), and their relationship to the degree of unsaturationof fatty acids in phospholipids was examined. Polarization values (P) for the tonoplast from cultured cellsof CI rice, in contrast to those from CS rice, exceeded thosefor the plasma membrane. The values for the tonoplast and plasmamembrane from CI cells were somewhat higher than those fromCS cell. Thus, the tonoplast of CI cells has the lowest fluidity,while the fluidity of the tonoplast and plasma membrane of CIcells shows greater dependence on temperature. Arrhenius plotsof the fluorescence anisotropy parameter {(ro/r)–1}–1of DPH in the plasma membrane and tonoplast from CI cells gavea slope that was virtually linear throughout the entire rangeof temperatures from 50°C to 10°C. However, in the caseof CS cells, a discontinuity was sometimes noted in the curvebetween 35°C and 30°C for tonoplast membranes. The activationenergy (Ea) of the anisotropy parameter of DPH in both the plasmamembrane and tonoplast from CI cells was greater than that fromCS cells. Ea in both cases for CS cells increased with increasingduration of exposure to low tempera ture (5°C), becomingnearly the same as that for CI cells. The proportion of unsaturated fatty acids, such as linoleicacid (18:2) and linolenic acid (18:3), in the total phospholipidsof the plasma membrane and tonoplast from CI cells was muchhigher than that from CS cells. In membranes from CS cells,this proportion also increased with increasing duration of exposureto low temperature and reached the value for membranes fromCI cells. In particular, in CS cells, the most dramatic changewas the change in PE and PC that in volved a sharp decreasein levels of 18:1, accompanied by an increase in 18:3. The proportionof unsaturated fatty acids was increased by exposure to lowtemperature, with an accompanying in crease in values of Ea. (Received April 10, 1991; Accepted May 9, 1992)  相似文献   

8.
The present study investigated and compared the effect of growth temperature on the susceptibility of biofilm-detached and planktonic Staphylococcus aureus cells, to benzalkonium chloride (BAC). This study also highlights the impact of BAC on the bacterial physiology and the role of membrane fluidity regulation as a bacterial resistance mechanism. The minimum inhibitory concentration of BAC was characterized with micro-dilution growth inhibition assay. The BAC treatment was performed on S. aureus cultured at 20 °C and 37 °C, for 24 h. The morphology of S. aureus cells was examined using scanning electron microscopy. The loss of bacterial membrane integrity after BAC treatment was studied by monitoring the intracellular potassium ion leakage using the atomic absorption spectroscopy. The bacterial membrane total fatty acid composition, controlling the membrane fluidity, was analyzed by GC/MS. The results showed that the resistance of S. aureus cells to BAC increased with the increase of growth temperature. The planktonic cells were more susceptible to BAC than biofilm-detached ones. The rise of growth temperature resulted in an increase of S. aureus membrane rigidity. Furthermore, a higher membrane fluidity was observed in planktonic cells when compared to that in the biofilm-detached ones. The resistance of S. aureus seems to depend on the growth temperature. Compared to planktonic cells, biofilm-detached cells showed a greater resistance to BAC. The BAC targets and disturbs the bacterial membrane. Membrane fluidity modulation is likely a one of resistance mechanisms for S. aureus to BAC at the cellular scale. Therefore, disinfection procedures, in food sector, should be adapted for bacteria detached from biofilm.  相似文献   

9.
Psychrotrophic strains of Acidithiobacillus ferrooxidans have an important role in metal leaching and acid mine drainage (AMD) production in colder mining environments. We investigated cytoplasmic membrane fluidity and fatty acid alterations in response to low temperatures (5 and 15°C). Significant differences in membrane fluidity, measured by polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), were found where the psychrotrophic strains had a significantly more rigid membrane (P range = 0.41–0.45) and lower transition temperature midpoints (T m = 2.0°C) and broader transition range than the mesophilic strains (P range = 0.38–0.39; T m = 2.0–18°C) at cold temperatures. Membrane remodeling was evident in all strains with a common trend of increased unsaturated fatty acid component in response to lower growth temperatures. In psychrotrophic strains, decreases in 12:0 fatty acids distinguished the 5°C fatty acid profiles from those of the mesophilic strains that showed decreases in 16:0, 17:0, and cyclo-19:0 fatty acids. These changes were also correlated with the observed changes in membrane fluidity (R 2 = 63–97%). Psychrotrophic strains employ distinctive modulation of cytoplasmic membrane fluidity with uncommon membrane phase changes as part of their adaptation to the extreme AMD environment in colder climates.  相似文献   

10.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decreased membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC)§ ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipo-proteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80–85% of abetalipo-proteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity ({ie116-1}) between 5 and 42°C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively, at 10°C; 4.63 vs 4.04 poise at 37°C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

11.
An understanding of membrane destabilization induced by osmotic treatments is important to better control cell survival during biotechnological processes. The effects on the membranes of the yeast Saccharomyces cerevisiae of perturbations similar in intensity (same amount of energy) but differing in the source type (heat, compression and osmotic gradient) were investigated. The anisotropy of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene was measured before and after each treatment to assess the reversibility of the membrane changes related to each treatment. Except for heat shock at 75°C, changes in membrane fluidity were reversible after the return to initial conditions, showing that two kinds of physical stress can be distinguished regarding the reversibility of membrane changes: high and mild energy stresses. With the application of osmotic gradients, anisotropy was assessed during treatment with five osmotic pressure levels from 30.7 to 95.4 MPa with two different yeast strains and related to the rate of cell death caused by each stress. The exposure of cells to increasing osmotic pressures involved a progressive lowering of membrane anisotropy during lethal perturbations. Osmotic stresses associated with reversible fluidity changes of increasing intensity in the membrane led to proportional death rates and time-dependant cell death of increasing rapidity during the application of the stress. Finally, a hypothesis relating the extent of membrane structural changes to the kinetic of cell death is proposed.  相似文献   

12.
Purdy PH  Fox MH  Graham JK 《Cryobiology》2005,51(1):102-112
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.  相似文献   

13.
The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (ΔpH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane ΔpH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.  相似文献   

14.
Plasma membrane is one of the preferential targets of reactive oxygen species which cause lipid peroxidation. This process modifies membrane properties such as membrane fluidity, a very important physical feature known to modulate membrane protein localization and function. The aim of this study is to evaluate the effect of oxidative stress on plasma membrane fluidity regionalization of single living THP-1 macrophages. These cells were oxidized with H2O2 at different concentrations, and plasma membrane fluidity was analyzed by two-photon microscopy in combination with the environment-sensitive probe Laurdan. Results show a significant H2O2 concentration dependent increase in the frequency of rigid lipid regions, mainly attributable to lipid rafts, at the expense of the intermediate fluidity regions. A novel statistical analysis evaluated changes in size and number of lipid raft domains under oxidative stress conditions, as lipid rafts are platforms aiding cell signaling and are thought to have relevant roles in macrophage functions. It is shown that H2O2 causes an increase in the number, but not the size, of raft domains. As macrophages are highly resistant to H2O2, these new raft domains might be involved in cell survival pathways.  相似文献   

15.
Streptococcus mutans was cultivated in media containing sucrose (10–40%, w/v) and the sucrose induced changes in chemical and physical properties of its membrane lipids were investigated. The degree of unsaturation in the fatty acids of both total lipid and glycolipid fractions decreased when the sucrose concentration was increased. An electron spin resonance spectroscopic study revealed the reduction of membrane lipid fluidity by adding sucrose to the growth medium. Liposomes prepared from membrane lipids of bacteria grown with sucrose showed less osmotic volume changes than those of bacteria grown without sucrose. These results suggest that modification of membrane lipid composition, fluidity and osmosis-resistance have an important role in the ability of Streptococcus mutans to grow in sucrose at high concentrations.  相似文献   

16.
1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was used to assess the cell envelope fluidity of Corynebacterium glutamicum 2262 during a temperature-triggered glutamate producing process. Because the fluorescence lifetime of TMA-DPH was shown to be constant all over the process, fluorescence anisotropy can be considered as a good index of cell envelope fluidity. When the temperature of the fed-batch culture was increased from 33 to 39°C to induce glutamate excretion, the fluorescence anisotropy values decreased from 0.212 ± 0.002 to 0.186 ± 0.002 (corresponding to an increase in the cell fluidity), while the specific glutamate production rate reached its maximal value. The increase in fluidity of the C. glutamicum cell envelope was not due to a physical effect related to the temperature elevation, but rather to an alteration of the composition of the cell envelope. Using a mutant devoid of corynomycolates, significant differences in fluorescence anisotropy values were obtained compared to the wild-type strain, suggesting that TMA-DPH is mainly anchored into the corynomycomembrane. Differences in fluorescence anisotropy were also observed when the bacteria were cultivated at 33, 36, 38, and 39°C in batch cultures, and a linear relationship was obtained between the maximum specific glutamate production rate and the measured fluidity. When using the glutamate non-producing variant of C. glutamicum 2262, the fluorescence anisotropy remained constant at 0.207 ± 0.003 whatever the applied temperature shift. This suggests that the fluidity of the Corynebacteria mycomembrane plays an important role in glutamate excretion during the temperature-triggered process.  相似文献   

17.
A E Woolgar 《Cryobiology》1974,11(1):44-51
Human red blood cells were frozen at temperatures down to ?9 °C in solutions containing sucrose, and the hemolysis on thawing was measured. This was compared with the hemolysis caused by exposing the cells to high concentrations of sucrose and then resuspending them in more dilute solutions at 4 °C. The effects of the hypertonic solutions of sucrose on potassium, sodium, and sucrose movements were also investigated. It was found that sucrose does not prevent damage to the cells by very hypertonic solutions (whether during freezing and thawing or at 4 °C) but it does reduce hemolysis of cells previously exposed to these solutions if present in the resuspension (or thawing) solution. Evidence is presented that the damaging effects of the hypertonic solutions of sucrose occurring during freezing are associated with changes in cell membrane permeability but that posthypertonic hemolysis is not primarily associated with a “loading” of the cells with extracellular solutes in the hypertonic phase. It is concluded that sucrose may reduce hemolysis of red blood cells by slow freezing and thawing by reducing colloid osmotic swelling of cells with abnormally permeable membranes.  相似文献   

18.
The influence of pH and temperature on the structural organization, fluidity and permeability of the hyperthermophilic archaeon membrane was investigated in situ by a combination of electron paramagnetic resonance (EPR) and fluorescence emission spectroscopy. For EPR measurements, Aeropyrum pernix cells, after growing at different pHs, were spin-labeled with the doxyl derivative of palmitic acid methylester (MeFASL[10,3]). From the EPR spectra maximal hyperfine splitting (2A max) and empirical correlation time (τemp), which are related to mean membrane fluidity, were determined. The mean membrane fluidity increases with temperature and depends on the pH of the growth medium. Computer simulation of the EPR spectra shows that membrane of A. pernix is heterogeneous and consists of the regions characterized with three different types of motional characteristics, which define three types of membrane domains. Order parameter and proportion of the spin probes in the three types of domains define mean membrane fluidity. The fluidity changes of the membrane with pH and temperature correlate well with the ratio between the fluorescence emission intensity of the first and third bands in the vibronic spectra of pyrene, I1/I3. At pH 7.0 a decrease of I1/I3 from 2.0 to 1.2, due to the penetration of pyrene into the nonpolar membrane region, is achieved at temperatures above 65°C, the lower temperature limit of A. pernix growth.  相似文献   

19.
To assess whether alterations in membrane fluidity of neonatal rat heart cells modulate gap junctional conductance (g j ), we compared the effects of 2mm 1-heptanol and 20 μm 2-(methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate (A2C) in a combined fluorescence anisotropy and electrophysiological study. Both substances decreased fluorescence steady-state anisotropy (rss), as assessed with the fluorescent probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) by 9.6±1.1% (mean ±sem,n=5) and 9.8±0.6% (n=5), respectively, i.e., both substances increased bulk membrane fluidity. Double whole-cell voltage-clamp experiments showed that 2mm heptanol uncoupled cell pairs completely (n=6), whereas 20 μm A2C, which increased bulk membrane fluidity to the same extent, did not affect coupling at all (n=5). Since gap junction channels are embedded in relatively cholesterol-rich domains of the membrane, we specifically assessed the fluidity of the cholesterol-rich domains with dehydroergosterol (DHE). Using DHE, heptanol increased rss by 14.9±3.0% (n=5), i.e., decreased cholesterol domain fluidity, whereas A2C had no effect on rss (−0.4±6.7%,n=5). Following an increase of cellular “cholesterol” content (by loading the cells with DHE), 2mm heptanol did not uncouple cell pairs completely:g j decreased by 80±20% (range 41–95%,n=5). The decrease ing j was most probably due to a decrease in the open probability of the gap junction channels, because the unitary conductances of the channels were not changed nor was the number of channels comprising the gap junction. The sensitivity of non-junctional membrane channels to heptanol was unaltered in cholesterol-enriched myocytes. These results indicate that the fluidity of cholesterol-rich domains is of importance to gap junctional coupling, and that heptanol decreasesg j by decreasing the fluidity of cholesterol-rich domains, rather than by increasing the bulk membrane fluidity.  相似文献   

20.
The effect of osmotic stress on cell growth and phenylethanoid glycosides (PeGs) biosynthesis was investigated in cell suspension cultures of Cistanche deserticola Y. C. Ma, a desert medicinal plant grown in west region of China. Various initial sucrose concentrations significantly affected cell growth and PeGs biosynthesis in the suspension cultures, and the highest dry weight and PeGs accumulation reached 15.9 g l−1-DW and 20.7 mg g−1-DW respectively at the initial osmotic stress of 300 mOsm kg−1 where the sucrose concentration was 175.3 mM. Stoichiometric analysis with different combinations of sucrose and non-metabolic sugar (mannitol) or non-sugar osmotic agents (PEG and NaCl) revealed that osmotic stress itself was an important factor for enhancing PeGs biosynthesis in cell suspension cultures of C. deserticola. The maximum PeGs contents of 26.9 and 23.8 mg g−1-DW were obtained after 21 days at the combinations of 87.6 mM sucrose with 164.7 mM mannitol (303 mOsm kg−1) or 20 mM PEG respectively, which was higher than that of C. deserticola cell cultures grown under an initial sucrose concentration of 175.3 mM after 30 days. The stimulated PeGs accumulation in the cell suspension cultures was correlated to the increase of phenylalanine ammonium lyase (PAL) activity induced by osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号