首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Rechargeable aqueous batteries with Zn2+ as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g?1 at 0.1 A g?1, and the capacity retention rate is 94% after 2000 cycles at 2 A g?1 and 83% after 10 000 cycles at 5 A g?1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8 layered structure in NaCaVO is energetically favorable for Zn2+ diffusion and the structural water situated between V3O8 layers promotes a fast charge‐transfer and bulk migration of Zn2+ by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+ and Ca2+ alternately suited in V3O8 layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.  相似文献   

2.
Aqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed‐valence vanadium oxide, V6O13, that functions as a stable cathode material in mildly acidic aqueous electrolytes is reported. Paired with a zinc metal anode, this material exhibits performance metrics of 360 mAh g?1 at 0.2 A g?1, 92% capacity retention after 2000 cycles, and 145 mAh g?1 at a current density of 24.0 A g?1. A combination of experiments and density functional theory calculations suggests that hydrated intercalation, where water molecules are cointercalated with Zn ions upon discharge, accounts for the aforementioned electrochemical performance. This intercalation mechanism facilitates Zn ion diffusion throughout the host lattice and electrode–electrolyte interface via electrostatic shielding and concurrent structural stabilization. Through a correlation of experimental data and theoretical calculations, the promise of utilizing hydrated intercalation as a means to achieve high‐performance AZIBs is demonstrated.  相似文献   

3.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

4.
Rechargeable magnesium batteries (RMBs) are attractive candidates for large‐scale energy storage owing to the high theoretical specific capacity, rich earth abundance, and good safety characteristics. However, the development of desirable cathode materials for RMBs is constrained by the high polarity and slow intercalation kinetics of Mg2+ ions. Herein, it is demonstrated that 2‐ethylhexylamine pillared vanadium disulfide nanoflowers (expanded VS2) with enlarged interlayer distances exhibit greatly boosted electrochemical performance as a cathode material in RMBs. Through a one‐step solution‐phase synthesis and in situ 2‐ethylhexylamine intercalation process, VS2 nanoflowers with ultralarge interlayer spacing are prepared. A series of ex situ characterizations verify that the cathode of expanded VS2 nanoflowers undergoes a reversible intercalation reaction mechanism, followed by a conversion reaction mechanism. Electrochemical kinetics analysis reveal a relatively fast Mg‐ion diffusivity of expanded VS2 nanoflowers in the order of 10?11–10?12 cm2 s?1, and the pseudocapacitive contribution is up to 64% for the total capacity at 1 mV s?1. The expanded VS2 nanoflowers show highly reversible discharge capacity (245 mAh g?1 at 100 mA g?1), good rate capability (103 mAh g?1 at 2000 mA g?1), and stable cycling performance (90 mAh g?1 after 600 cycles at 1000 mA g?1).  相似文献   

5.
Rechargeable aqueous Zn‐based batteries are attractive candidates as energy storage technology, but the uncontrollable Zn dendrites, low stripping/plating coulombic efficiency, and inefficient utilization of Zn metal limit the battery reliability and energy density. Herein, for the first time, a novel presodiated TiS2 (Na0.14TiS2) is proposed and investigated as an intercalated anode for aqueous Zn‐ion batteries, showing a capacity of 140 mAh g?1 with a suitable potential of 0.3 V (vs Zn2+/Zn) at 0.05 A g?1 and superior cyclability of 77% retention over 5000 cycles at 0.5 A g?1. The remarkable performance originates from the buffer phase formation of Na0.14TiS2 after chemically presodiating TiS2, which not only improves the structural reversibility and stability but also enhances the diffusion coefficient and electronic conductivity, and lowers cation migration barrier, as evidenced by a series of experimental and theoretical studies. Moreover, an aqueous “rocking‐chair” Zn‐ion full battery is successfully demonstrated by this Na0.14TiS2 anode and ZnMn2O4 cathode, which delivers a capacity of 105 mAh g?1 (for anode) with an average voltage of 0.95 V at 0.05 A g?1 and preserves 74% retention after 100 cycles at 0.2 A g?1, demonstrating the feasibility of Zn‐ion full batteries for energy storage applications.  相似文献   

6.
Rationally designed P2‐K0.75[Ni1/3Mn2/3]O2 is introduced as a novel cathode material for potassium‐ion batteries (KIBs). P2‐K0.75[Ni1/3Mn2/3]O2 cathode material designed through electrochemical ion‐exchange from P2‐Na2/3[Ni1/3Mn2/3]O2 exhibits satisfactory electrode performances; 110 mAh g?1 (20 mA g?1) retaining 86% of capacity for 300 cycles and unexpectedly high reversible capacity of about 91 mAh g?1 (1400 mA g?1) with excellent capacity retention of 83% over 500 cycles. According to theoretical and experimental investigations, the overall potassium storage mechanism of P2‐K0.75[Ni1/3Mn2/3]O2 is revealed to be a single‐phase reaction with small lattice change upon charge and discharge, presenting the Ni4+/2+ redox couple reaction. Such high power capability is possible through the facile K+ migration in the K0.75[Ni1/3Mn2/3]O2 structure with a low activation barrier energy of ≈210 meV. These findings indicate that P2‐K0.75[Ni1/3Mn2/3]O2 is a promising candidate cathode material for high‐rate and long‐life KIBs.  相似文献   

7.
Aqueous zinc‐ion batteries (AZIBs) have attracted considerable attention as promising next‐generation power sources because of the abundance, low cost, eco‐friendliness, and high security of Zn resources. Recently, vanadium‐based materials as cathodes in AZIBs have gained interest owing to their rich electrochemical interaction with Zn2+ and high theoretical capacity. However, existing AZIBs are still far from meeting commercial requirements. This article summarizes recent advances in the rational design of vanadium‐based materials toward AZIBs. In particular, it highlights various tactics that have been reported to increase the intercalation space, structural stability, and the diffusion ability of the guest Zn2+, as well as explores the structure‐dependent electrochemical performance and the corresponding energy storage mechanism. Furthermore, this article summarizes recent achievements in the optimization of aqueous electrolytes and Zn anodes to resolve the issues that remain with Zn anodes, including dendrite formation, passivation, corrosion, and the low coulombic efficiency of plating/stripping. The rationalization of these research findings can guide further investigations in the design of cathode/anode materials and electrolytes for next‐generation AZIBs.  相似文献   

8.
Rechargeable aqueous zinc‐ion batteries (ZIBs) have been emerging as potential large‐scale energy storage devices due to their high energy density, low cost, high safety, and environmental friendliness. However, the commonly used cathode materials in ZIBs exhibit poor electrochemical performance, such as significant capacity fading during long‐term cycling and poor performance at high current rates, which significantly hinder the further development of ZIBs. Herein, a new and highly reversible Mn‐based cathode material with porous framework and N‐doping (MnOx@N‐C) is prepared through a metal–organic framework template strategy. Benefiting from the unique porous structure, conductive carbon network, and the synergetic effect of Zn2+ and Mn2+ in electrolyte, the MnOx@N‐C shows excellent cycling stability, good rate performance, and high reversibility for aqueous ZIBs. Specifically, it exhibits high capacity of 305 mAh g?1 after 600 cycles at 500 mA g?1 and maintains achievable capacity of 100 mAh g?1 at a quite high rate of 2000 mA g?1 with long‐term cycling of up to 1600 cycles, which are superior to most reported ZIB cathode materials. Furthermore, insight into the Zn‐storage mechanism in MnOx@N‐C is systematically studied and discussed via multiple analytical methods. This study opens new opportunities for designing low‐cost and high‐performance rechargeable aqueous ZIBs.  相似文献   

9.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

10.
Rechargeable aqueous zinc‐ion batteries (ZIBs) are appealing due to their high safety, zinc abundance, and low cost. However, developing suitable cathode materials remains a great challenge. Herein, a novel 2D heterostructure of ultrathin amorphous vanadium pentoxide uniformly grown on graphene (A‐V2O5/G) with a very short ion diffusion pathway, abundant active sites, high electrical conductivity, and exceptional structural stability, is demonstrated for highly reversible aqueous ZIBs (A‐V2O5/G‐ZIBs), coupling with unprecedented high capacity, rate capability, long‐term cyclability, and excellent safety. As a result, 2D A‐V2O5/G heterostructures for stacked ZIBs at 0.1 A g?1 display an ultrahigh capacity of 489 mAh g?1, outperforming all reported ZIBs, with an admirable rate capability of 123 mAh g?1 even at 70 A g?1. Furthermore, the new‐concept prototype planar miniaturized zinc‐ion microbatteries (A‐V2O5/G‐ZIMBs), demonstrate a high volumetric capacity of 20 mAh cm?3 at 1 mA cm?2, long cyclability; holding high capacity retention of 80% after 3500 cycles, and in‐series integration, demonstrative of great potential for highly‐safe microsized power sources. Therefore, the exploration of such 2D heterostructure materials with strong synergy is a reliable strategy for developing safe and high‐performance energy storage devices.  相似文献   

11.
12.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

13.
The nonaqueous lithium–oxygen (Li–O2) battery is considered as one of the most promising candidates for next‐generation energy storage systems because of its very high theoretical energy density. However, its development is severely hindered by large overpotential and limited capacity, far less than theory, caused by sluggish oxygen redox kinetics, pore clogging by solid Li2O2 deposition, inferior Li2O2/cathode contact interface, and difficult oxygen transport. Herein, an open‐structured Co9S8 matrix with sisal morphology is reported for the first time as an oxygen cathode for Li–O2 batteries, in which the catalyzing for oxygen redox, good Li2O2/cathode contact interface, favorable oxygen evolution, and a promising Li2O2 storage matrix are successfully achieved simultaneously, leading to a significant improvement in the electrochemical performance of Li–O2 batteries. The intrinsic oxygen‐affinity revealed by density functional theory calculations and superior bifunctional catalytic properties of Co9S8 electrode are found to play an important role in the remarkable enhancement in specific capacity and round‐trip efficiency for Li–O2 batteries. As expected, the Co9S8 electrode can deliver a high discharge capacity of ≈6875 mA h g?1 at 50 mA g?1 and exhibit a low overpotential of 0.57 V under a cutoff capacity of 1000 mA h g?1, outperforming most of the current metal‐oxide‐based cathodes.  相似文献   

14.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

15.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   

16.
Potassium‐ion batteries are attracting great interest for emerging large‐scale energy storage owing to their advantages such as low cost and high operational voltage. However, they are still suffering from poor cycling stability and sluggish thermodynamic kinetics, which inhibits their practical applications. Herein, the synthesis of hierarchical K1.39Mn3O6 microspheres as cathode materials for potassium‐ion batteries is reported. Additionally, an effective AlF3 surface coating strategy is applied to further improve the electrochemical performance of K1.39Mn3O6 microspheres. The as‐synthesized AlF3 coated K1.39Mn3O6 microspheres show a high reversible capacity (about 110 mA h g?1 at 10 mA g?1), excellent rate capability, and cycling stability. Galvanostatic intermittent titration technique results demonstrate that the increased diffusion kinetics of potassium‐ion insertion and extraction during discharge and charge processes benefit from both the hierarchical sphere structure and surface modification. Furthermore, ex situ X‐ray diffraction measurements reveal that the irreversible structure evolution can be significantly mitigated via surface modification. This work sheds light on rational design of high‐performance cathode materials for potassium‐ion batteries.  相似文献   

17.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

18.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

19.
Na‐based batteries have long been regarded as an inexpensive, sustainable candidate for large‐scale stationary energy storage applications. Unfortunately, the market penetration of conventional Na‐NiCl2 batteries is approaching its limit for several reasons, including limited rate capability and high Ni cost. Herein, a Na‐FeCl2 battery operating at 190 °C is reported that allows a capacity output of 116 mAh g?1 at an extremely high current density of 33.3 mA cm?2 (≈0.6C). The superior rate performance is rooted in the intrinsically fast kinetics of the Fe/Fe2+ redox reaction. Furthermore, it is demonstrated that a small amount of Ni additive (10 mol%) effectively mitigates capacity fading of the Fe/NaCl cathode caused by Fe particle pulverization during long‐term cycling. The modified Fe/Ni cathode exhibits excellent cycling stability, maintaining a discharge energy density of over 295 Wh kg?1 for 200 cycles at 10 mA cm?2 (≈C/5).  相似文献   

20.
Li2S is a fully lithiated sulfur‐based cathode with a high theoretical capacity of 1166 mAh g?1 that can be coupled with lithium‐free anodes to develop high‐energy‐density lithium–sulfur batteries. Although various approaches have been pursued to obtain a high‐performance Li2S cathode, there are still formidable challenges with it (e.g., low conductivity, high overpotential, and irreversible polysulfide diffusion) and associated fabrication processes (e.g., insufficient Li2S, excess electrolyte, and low reversible capacity), which have prevented the realization of high electrochemical utilization and stability. Here, a new cathode design composed of a homogeneous Li2S‐TiS2‐electrolyte composite that is prepared by a simple two‐step dry/wet‐mixing process is demonstrated, allowing the liquid electrolyte to wet the powder mixture consisting of insulating Li2S and conductive TiS2. The close‐contact, three‐phase boundary of this system improves the Li2S‐activation efficiency and provides fast redox‐reaction kinetics, enabling the Li2S‐TiS2‐electrolyte cathode to attain stable cyclability at C/7 to C/3 rates, superior long‐term cyclability over 500 cycles, and promising high‐rate performance up to 1C rate. More importantly, this improved performance results from a cell design attaining a high Li2S loading of 6 mg cm?2, a high Li2S content of 75 wt%, and a low electrolyte/Li2S ratio of 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号