首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa?1 cm?2 and the maximum power density per unit sound pressure of 1.82 WPa?1 m?2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.  相似文献   

2.
The high‐output triboelectric nanogenerator (TENG) is indispensable for its practical applications toward industrial products. However, the electricity loss in simple parallel connection among all units and the typically high crest factor output seriously hamper the practical applications of TENG. Here, a rectified TENG is reported in parallel structure to solve the problem of electricity loss in simple parallel connection. The rotational contact–separation structure with phase difference between rectified TENGs addresses high crest factor output and extends service life of rotational TENG simultaneously. The current crest factor is dramatically decreased to 1.31 in multiple rectifier multiple TENG in parallel (MRM‐TENG), while that of TENG in simple parallel is higher than 6. Meanwhile, the current output can retain up to ≈93% of its initial performance after 7 200 000 rotations under 2.00 r s?1 of 1000 h. Furthermore, the equivalent current can be in linear growth with low crest factor by making MRM‐TENG in parallel for distributed energy supply without electricity loss. This work may provide a new strategy for TENG in parallel to achieve a low crest factor output and long‐term cycling stability power generation in distributed energy harvesting for large‐scale power application.  相似文献   

3.
Vibration is a common mechanical phenomenon and possesses mechanical energy in ambient environment, which can serve as a sustainable source of power for equipment and devices if it can be effectively collected. In the present work, a novel soft and robust triboelectric nanogenerator (TENG) made of a silicone rubber‐spring helical structure with nanocomposite‐based elastomeric electrodes is proposed. Such a spring based TENG (S‐TENG) structure operates in the contact‐separation mode upon vibrating and can effectively convert mechanical energy from ambient excitation into electrical energy. The two fundamental vibration modes resulting from the vertical and horizontal excitation are analyzed theoretically, numerically, and experimentally. Under the resonant states of the S‐TENG, its peak power density is found to be 240 and 45 mW m?2 with an external load of 10 MΩ and an acceleration amplitude of 23 m s?2. Additionally, the dependence of the S‐TENG's output signal on the ambient excitation can be used as a prime self‐powered active vibration sensor that can be applied to monitor the acceleration and frequency of the ambient excitation. Therefore, the newly designed S‐TENG has a great potential in harvesting arbitrary directional vibration energy and serving as a self‐powered vibration sensor.  相似文献   

4.
The trends in miniaturization of electronic devices give rise to the attention of energy harvesting technologies that gathers tiny wattages of power. Here this study demonstrates an ultrathin flexible single electrode triboelectric nanogenerator (S‐TENG) which not only could harvest mechanical energy from human movements and ambient sources, but also could sense instantaneous force without extra energy. The S‐TENG, which features an extremely simple structure, has an average output current of 78 μA, lightening up at least 70 LEDs (light‐emitting diode). Even tapped by bare finger, it exhibits an output current of 1 μA. The detection sensitivity for instantaneous force sensing is about 0.947 μA MPa?1. Performances of the device are also systematically investigated under various motion types, press force, and triboelectric materials. The S‐TENG has great application prospects in sustainable wearable devices, sustainable medical devices, and smart wireless sensor networks owning to its thinness, light weight, energy harvesting, and sensing capacities.  相似文献   

5.
The need for cost‐effective and sustainable power supplies has spurred a growing interest in hybrid energy harvesting systems, and the most elementary energy production process relies on intermittent solar power. Here, it is shown how the ambient mechanical energy leads to water splitting in a photoelectrochemical (PEC) cell boosted by a triboelectric nanogenerator (TENG). In this strategy, a flexible TENG collects and transforms mechanical energy into electric current, which boosts the PEC water splitting via the charged Li‐ion battery. Au nanoparticles are deposited on TiO2 nanoarrays for extending the available light spectrum to visible part by surface plasmon resonance effect, which yields a photocurrent density of 1.32 mA cm?2 under AM 1.5 G illumination and 0.12 mA cm?2 under visible light with a bias of 0.5 V. The TENG‐charged battery boosts the water splitting performance through coupling electrolysis and enhanced electron–hole separation efficiency. The hybrid cell exhibits an instantaneous current more than 9 mA with a working electrode area of 0.3 cm2, suggesting a simple but efficient route for simultaneously converting solar radiation and mechanical energy into hydrogen.  相似文献   

6.
Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self‐powered speed sensor of wind by correlating the short‐circuit current with the wind speed.  相似文献   

7.
Vibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m‐2 and 1.45 W m‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.  相似文献   

8.
Packaging is a critical aspect of triboelectric nanogenerators (TENG) toward practical applications, since the performance of TENG is greatly affected by environmental conditions such as humidity. A waterproof triboelectric–electromagnetic hybrid generator (WPHG) for harvesting mechanical energy in harsh environments is reported. Since the mechanical transmission from the external mechanical source to the TENG is through a noncontact force between the paired magnets, a fully isolated packaging of TENG part can be easily achieved. At the same time, combining with metal coils, these magnets can be fabricated to be electromagnetic generators (EMG). The characteristics and advantages of outputs from both TENG and EMG are systematically studied and compared to each other. By using transformers and full‐wave rectifiers, 2.3 mA for total short‐circuit current and 5 V for open‐circuit voltage are obtained for WPHG under a rotation speed of 1600 rpm, and it can charge a supercapacitor (20 mF) to 1 V in 22s. Finally, the WPHG is demonstrated to harvest wind energy in the rainy condition and water‐flow energy under water. The reported WPHG renders an effective and sustainable technology for ambient mechanical energy harvesting in harsh environments. Solid progress in both the packaging of TENG and the practical applications of the hybrid generator toward practical power source and self‐powered systems is presented.  相似文献   

9.
An innovative design is reported of a direct‐current triboelectric nanogenerator (DC‐TENG) based on a rotating disk design for harvesting rotational mechanical energy. The DC‐TENG consists of two disks and two pairs of flexible electric brushes that are made of carbon fiber and contact two electrodes, respectively. During the rotation, two disks have distinct triboelectric polarities for a cyclic in‐plane charge separation between them and an alternating current is generated between the two electrodes. Because of the sliding contact and automatically switch between the electric brushes and the two electrodes, the current is reversed in the second half of the cycle and a direct current is generated. The role that the rotating speed and the segmentation number have is thoroughly investigated and shows that there is direct current enhancement not only at higher speed but also with more segments. The DC‐TENG has been demonstrated as a constant current source for directly and continuously driving electronic devices and/or charging an energy storage unit without a rectifier bridge. This work presents a novel DC‐TENG technology and opens up more potential applications for harvesting rotational mechanical energy and powering electronics.  相似文献   

10.
With the development of the Internet of Things (IoTs), widely distributed electronics in the environment require effective in situ energy harvesting technologies, which is made challenging by the unstable supply and severe conditions in some environments. In this work, a hybrid all‐in‐one power source (AoPS) is demonstrated for widely adaptive environmental energy harvesting. With a novel structure, the AoPS hybridizes high‐performance spherical triboelectric nanogenerators (TENGs) with solar cells, enabling the harvesting of most typical environmental energies from wind, rain drops, and sun light, for complementary supply. The spherical TENG units with a packaged structure can work robustly to collect energy from fluid. Nearly continuous direct current and a high average power of 5.63 mW can be obtained by four TENG units, which is further complemented by solar cells. Typical application scenarios are also demonstrated, achieving self‐powered soil moisture control, forest fire prevention and pipeline monitoring. The work realizes the concept of an environmental power source that can be deployed in the environment with high adaptability to make use of all kinds of surrounding energies for powering electronics in all‐weather conditions, providing a reliable foundation for the era of the IoTs.  相似文献   

11.
Triboelectric nanogenerator (TENG) is an emerging approach for harvesting energy from the living environment. But its performance is limited by the maximum density of surface charges created by contact electrification. Here, by rationally designing a synchronous rotation structure, a charge pumping strategy is realized for the first time in a rotary sliding TENGs, which is demonstrated to enhance the charge density by a factor of 9, setting up a record for rotary TENGs. The average power is boosted by more than 15 times compared with normal TENGs, achieving an ultrahigh average power density of 1.66 kW m?3, under a low drive frequency of 2 Hz. Moreover, the charge pumping mechanism enables decoupling of bound charge generation and the severity of interfacial friction in the main TENG, allowing surface lubricants to be applied for suppressing abrasion and lowering heat generation. The adaptability of the strategy to rotation and sliding type TENGs in low‐frequency agitations provides a breakthrough to the bottleneck of power output for mechanical energy harvesting, and should have a great impact on high‐power TENG design and practical applications in various fields.  相似文献   

12.
Healthcare monitoring systems can provide important health state information by monitoring the biomechanical parameter or motion of body segments. Triboelectric nanogenerators (TENGs) as self‐powered motion sensors have been developed rapidly to convert external mechanical change into electrical signal. However, research effort on using TENGs for multiaxis acceleration sensing is very limited. Moreover, TENG has not been demonstrated for rotation sensing to date. Herein, for the first time, a 3D symmetric triboelectric nanogenerator‐based gyroscope ball (T‐ball) with dual capability of energy harvesting and self‐powered sensing is proposed for motion monitoring including multiaxis acceleration and rotation. The T‐ball can harvest energy under versatile scenarios and function as self‐powered 3D accelerometer with sensitivity of 6.08, 5.87, and 3.62 V g ?1 . Furthermore, the T‐ball can serve as a self‐powered gyroscope for rotation sensing with sensitivity of 3.5 mV so?1. It shows good performance in hand motion recognition and human activity state monitoring applications. The proposed T‐ball as a self‐powered gyroscope for advanced motion sensing can pave the way to a self‐powered, more accurate, and more complete motion monitoring system.  相似文献   

13.
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.  相似文献   

14.
With the solar panels quickly spreading across the rooftops worldwide, solar power is now very popular. However, the output of the solar cell panels is highly dependent on weather conditions, making it rather unstable. Here, a hybridized power panel that can simultaneously generate power from sunlight, raindrop, and wind is proposed and demonstrated, when any or all of them are available in ambient environment. Without compromising the output performance and conversion efficiency of the solar cell itself, the presented hybrid cell can deliver an average output of 86 mW m?2 from the water drops at a dripping rate of 13.6 mL s?1, and an average output of 8 mW m?2 from wind at a speed of 2.7 m s?1, which is an innovative energy compensation to the common solar cells, especially in rainy seasons or at night. Given the compelling features, such as cost‐effectiveness and a greatly expanded working time, the reported hybrid cell renders an innovative way to realize multiple kinds of energy harvesting and as an useful compensation to the currently widely used solar cells. The demonstrated concept here will possibly be adopted in a variety of circumstances and change the traditional way of solar energy harvesting.  相似文献   

15.
Energy and the environment are two of the main issues facing the world today. As a consequence abundant renewable green energy sources such as wave energy, have become hot topics. Here, a multiple‐frequency triboelectric nanogenerator based on the water balloon (WB‐TENG) is proposed for harvesting water wave energy in any direction. Owing to the high elasticity of the water balloon, the WB‐TENG can realize a multiple‐frequency response to low‐frequency external mechanical simulations to generate high‐frequency electrical output. In addition, the water balloon can achieve self‐support without any additional supporting structure because of its tension, to make WB‐TENG still produce electrical output under slight vibration, which can also bring high energy conversion efficiency. Moreover, the fabricated WB‐TENG generates a maximum instantaneous short‐circuit current and an open‐circuit voltage of 147 µA and 1221 V, respectively. Most noteworthy, under the same conditions, the total transferred charge of WB‐TENG is 28 times than that of traditional TENG based on double plate structure during one working cycle. Therefore, this design can provide an effective way to promote the development of TENGs in blue energy.  相似文献   

16.
The conversion and transmission of blue energy in the ocean are critical issues. By employing triboelectric nanogenerators (TENGs), blue energy can be harvested but the corresponding electricity transmission and storage are still great challenges. In this work, an automatic high‐efficiency self‐powered energy collection and conversion system is proposed that converts blue energy to chemical energy. A gear‐driven unidirectional acceleration TENG is designed to convert disordered and low‐frequency water wave energy to low voltage and high current DC output. The output bias from the TENG can be used to drive a Ti–Fe2O3/FeNiOOH based photoelectrochemical cell under sunlight to produce hydrogen. Moreover, under the situation without sunlight, the self‐powered system can be automatically switched to another working state to charge a Co3O4 based lithium‐ion battery. The hydrogen production rate reaches to 4.65 µL min‐1 under sunlight at the rotation speed of 120 rpm. The conversion efficiency of the whole system is calculated to be 2.29%. The system triggered by photoswitches can automatically switch between two working states with or without sunlight and convert the blue energy to either hydrogen energy or battery energy for easy storage and transmission, which widens the future applications for blue energy.  相似文献   

17.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.  相似文献   

18.
Wind‐driven triboelectric nanogenerators (TENGs) play an important role in harvesting energy from ambient environments. Compared to single‐side‐fixed triboelectric nanogenerator (STENG) arrays for harvesting single‐pathway wind energy, double‐side‐fixed triboelectric nanogenerator (DTENG) arrays are developed to harvest bidirectional wind energy. Electrical performances of the STENG and DTENG can be improved due to sticky, abrasive, and electrical properties of the Ti buffer layers among Al, polytetrafluoroethylene (PTFE), and polyimide (Kapton), configuring in triboelectric PTFE/Ti/Al and Al/Ti/Kapton/Ti/Al thin films. Short‐circuit current (I SC), open‐circuit voltage (V OC), and frequencies of the STENG and DTENG increase with increasing wind velocity ranging from 9.2 to 18.4 m s21, revealing that the moderate I SC, V OC, frequencies, and output powers of the STENG and DTENG reach 67 μA, 57 μA, 334 V, 296 V, 173 Hz, 162 Hz, 5.5 mW and 3.4 mW with a matched load of 4 MΩ at airflow rate of 15.9 m s21, respectively. Compared with counterparts of the single‐pathway‐harvested STENG arrays, the I SC, durability, and stability of the bidirectional‐harvested DTENG can be dramatically improved by a 4 3 1 array connected in parallel because of the improved device configuration, stickiness, and abrasion by adhering Ti buffer layers. The durable DTENG arrays present a step toward practical applications in harvesting bidirectional wind energy for self‐powered systems and wireless sensors.  相似文献   

19.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   

20.
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号