首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Na super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm?1, σtotal = 2.4 mS cm?1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit?1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration.  相似文献   

2.
Sodium‐ion batteries (NIBs) have attracted more and more attention as economic alternatives for lithium‐ion batteries (LIBs). Sodium super ionic conductor (NASICON) structure materials, known for high conductivity and chemical diffusion coefficient of Na+ (≈10?14 cm2 s?1), are promising electrode materials for NIBs. However, NASICON structure materials often suffer from low electrical conductivity (<10?4 S cm?1), which hinders their electrochemical performance. Here high performance sodium storage performance in Na3V2(PO4)3 (NVP) is realized by optimizing nanostructure and rational surface engineering. A N, B codoped carbon coated three‐dimensional (3D) flower‐like Na3V2(PO4)3 composite (NVP@C‐BN) is designed to enable fast ions/electrons transport, high‐surface controlled energy storage, long‐term structural integrity, and high‐rate cycling. The conductive 3D interconnected porous structure of NVP@C‐BN greatly releases mechanical stress from Na+ extraction/insertion. In addition, extrinsic defects and active sites introduced by the codoping heteroatoms (N, B) both enhance Na+ and e? diffusion. The NVP@C‐BN displays excellent electrochemical performance as the cathode, delivering reversible capacity of 70% theoretical capacity at 100 C after 2000 cycles. When used as anode, the NVP@C‐BN also shows super long cycle life (38 mA h g?1 at 20 C after 5000 cycles). The design provides a novel approach to open up possibilities for designing high‐power NIBs.  相似文献   

3.
Ionic channels are discrete sites at which the passive movement of ions takes place during nervous excitation. Three types of channels are distinguished. 1. Leakage channels that are permanently open to various cations. 2. Na channels that open promptly on depolarization but slowly close again (inactivate) on sustained depolarization and that are predominantly permeable to Na+ ions. 3. K channels that on depolarization open after some delay but stay open and that are mainly passed by K+ ions. The selectivity sequence of the Na channels of the squid axon (or frog nerve) is as follows: Na+ ≈ Li+>(T1+)>NH+ 4?K+> Rb+, Cs+; that of K channels is: (T1+)>K+>Rb+>NH+ 4?Na+, Cs+, Na channels are selectively blocked by tetrodotoxin (TTX) or saxitoxin (STX), K channels by tetraethylammonium ions (TEA). Either channel type is reversibly blocked when one drug molecule binds to one site per channel, the equilibrium dissociation constant of these reactions being about 3×10?9 MTTX (or STX) and 4×10?4 M TEA, respectively. Because of their specificity and high affinity, TTX and STX are used to “titrate” the Na channels whose density appears to be of the order of 100/Μm2. The “gates” of the channels operate as a function of potential and time but independent of the permeating ion species. Drugs (e.g. veratridine) and enzymes (e.g. pronase, applied intraaxonally) cause profound changes in the gating function of the Na channels without influencing their selectivity. This points to separate structures for gating and ion discrimination. The latter is thought to be, in part, brought about by a “selectivity filter” of which detailed structural ideas exist. Recent experiments suggest that the gates of the Na channels are controlled by charged particles moving within the membrane under the influence of the electrical field.  相似文献   

4.
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1'' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1'' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1'' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.  相似文献   

5.
The bacterial sodium-coupled leucine/alanine transporter LeuT is broadly used as a model system for studying the transport mechanism of neurotransmitters because of its structural and functional homology to mammalian transporters such as serotonin, dopamine, or norepinephrine transporters, and because of the resolution of its structure in different states. Although the binding sites (S1 for substrate, and Na1 and Na2 for two co-transported sodium ions) have been resolved, we still lack a mechanistic understanding of coupled Na+- and substrate-binding events. We present here results from extensive (>20 μs) unbiased molecular dynamics simulations generated using the latest computing technology. Simulations show that sodium binds initially the Na1 site, but not Na2, and, consistently, sodium unbinding/escape to the extracellular (EC) region first takes place at Na2, succeeded by Na1. Na2 diffusion back to the EC medium requires prior dissociation of substrate from S1. Significantly, Na+ binding (and unbinding) consistently involves a transient binding to a newly discovered site, Na1″, near S1, as an intermediate state. A robust sequence of substrate uptake events coupled to sodium bindings and translocations between those sites assisted by hydration emerges from the simulations: (i) bindings of a first Na+ to Na1″, translocation to Na1, a second Na+ to vacated Na1″ and then to Na2, and substrate to S1; (ii) rotation of Phe253 aromatic group to seclude the substrate from the EC region; and (iii) concerted tilting of TM1b and TM6a toward TM3 and TM8 to close the EC vestibule.  相似文献   

6.
Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na+ ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na+ ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na+ ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li+ ions substitute for Na+ at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and 32P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li+ ions to substitute for Na+ ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1.  相似文献   

7.
We examined some biophysical mechanisms of ion migration across leaf cuticles enzymatically isolated from Acer saccharum L. and Citrus aurantium L. leaves. Diffusion potential measurements were used to calculate the permeabilities of Cl-, Li+, Na+, and Cs+ ions all as a ratio with respect to the permeability of K+ in cuticles. In 2 millimolar ionic strength solutions the permeability sequence from high to low was K = Cs > Na > Li » Cl. When the outer and inner surfaces of cuticles were bathed in artificial precipitation and artificial apoplast, respectively, diffusion potentials ranging from −52 to −91 millivolts were measured (inside negative). The Goldman equation predicted that the measured potentials were enough to increase the driving force on the accumulation of heavy metals by a factor of 4 to 7. Other ions migrate with forces 3 to 10 times less than predicted by the Goldman equation for concentration differences alone. Our analysis showed that Ca2+, and perhaps Mg2+, might even be accumulated against concentration gradients under some circumstances. Their uptake was apparently driven by the diffusion potentials created by the outward migration of monovalent salts. We feel that future models predicting leaching of nutrients from trees during acid rain events must be modified to account for the probable influence of diffusion potentials on ion migration.  相似文献   

8.
Sodium storage in both solid–liquid and solid–solid interfaces is expected to extend the horizon of sodium‐ion batteries, leading to a new strategy for developing high‐performance energy‐storage materials. Here, a novel composite aerogel with porous Li4Ti5O12 (PLTO) nanofibers confined in a highly conductive 3D‐interconnected graphene framework (G‐PLTO) is designed and fabricated for Na storage. A high capacity of 195 mA h g?1 at 0.2 C and super‐long cycle life up to 12 000 cycles are attained. Electrochemical analysis shows that the intercalation‐based and interfacial Na storage behaviors take effect simultaneously in the G‐PLTO composite aerogel. An integrated Na storage mechanism is proposed. This study ascribes the excellent performance to the unique structure, which not only offers short pathways for Na+ diffusion and conductive networks for electron transport, but also guarantees plenty of PLTO–electrolyte and PLTO–graphene interfacial sites for Na+ adsorption.  相似文献   

9.
Sodium‐ion batteries may become an alternative to the widespread lithium‐ion technology due to cost and kinetic advantages provided that cyclability is improved. For this purpose, the interplay between electrochemical and structural processes is key and is demonstrated in this work for Na2.46V6O16 (NVO) and Li2.55V6O16 employing operando synchrotron X‐ray diffraction. When NVO is cycled between 4.0 and 1.6 V, Na‐ions reversibly occupy two crystallographic sites, which results in remarkable cyclability. Upon discharge to 1.0 V, however, Na‐ions occupy also interstitial sites, inducing irreversible structural change with some loss of crystallinity concomitant with a decrease in capacity. Capacity fading increases with the ionic radius of the alkali ions (K+ > Na+ > Li+), suggesting that smaller ions stabilize the structure. This correlation of structural variation and electrochemical performance suggests a route toward improving cycling stability of a sodium‐ion battery. Its essence is a minor Li+‐retention in the A2+xV6O16 structure. Even though the majority of Li‐ions are replaced by the abundant Na+, the residual Li‐ions (≈10%) are sufficient to stabilize the layered structure, diminishing the irreversible structural damage. These results pave the way for further exploitation of the role of small ions in lattice stabilization that increases cycling performance.  相似文献   

10.
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. However, solid‐state batteries (SSBs) have been plagued by the relatively low ionic conductivity of SEs and large charge‐transfer resistance between electrode and SE. Here, a new design strategy is reported for improving the ionic conductivity of SE by self‐forming a composite material. An optimized Na+ ion conducting composite electrolyte derived from the Na1+ n Zr2Si n P3? n O12 NASICON (Na Super Ionic Conductor) structure is successfully synthesized, yielding ultrahigh ionic conductivity of 3.4 mS cm?1 at 25 °C and 14 mS cm?1 at 80 °C. On the other hand, in order to enhance the charge‐transfer rate at the electrode/electrolyte interface, an interface modification strategy is demonstrated by utilization of a small amount of nonflammable and nonvolatile ionic liquid (IL) at the cathode side in SSBs. The IL acts as a wetting agent, enabling a favorable interface kinetic in SSBs. The Na3V2(PO4)3/IL/SE/Na SSB exhibits excellent cycle performance and rate capability. A specific capacity of ≈90 mA h g?1 is maintained after 10 000 cycles without capacity decay under 10 C rate at room temperature. This provides a new perspective to design fast ion conductors and fabricate long life SSBs.  相似文献   

11.
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure—showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.  相似文献   

12.
Ion channels can regulate the plasma membrane potential (Vm) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.  相似文献   

13.
To investigate Na+ binding to the ion-binding sites presented on the cytoplasmic side of the Na,K-ATPase, equilibrium Na+-titration experiments were performed using two fluorescent dyes, RH421 and FITC, to detect protein-specific actions. Fluorescence changes upon addition of Na+ in the presence of various Mg2+ concentrations were similar and could be fitted with a Hill function. The half-saturating concentrations and Hill coefficients determined were almost identical. As RH421 responds to binding of a Na+ ion to the third neutral site whereas FITC monitors conformational changes in the ATP-binding site or its environment, this result implies that electrogenic binding of the third Na+ ion is the trigger for a structural rearrangement of the ATP-binding moiety. This enables enzyme phosphorylation, which is accompanied by a fast occlusion of the Na+ ions and followed by the conformational transition E1/E2 of the protein. The coordinated action both at the ion and the nucleotide binding sites allows for the first time a detailed formulation of the mechanism of enzyme phosphorylation that occurs only when three Na+ ions are bound. Received: 8 October 1998/Revised: 29 December 1998  相似文献   

14.
A possible mechanism for the Na,K-ATPase   总被引:2,自引:0,他引:2  
A model previously described for the Ca2+ pump of sarcoplasmic reticulum has been modified in a thought experiment so that it has the properties of a Na,K-adenosinetriphosphatase (ATPase). When the two Ca2+-specific sites are changed into three Na+-specific sites, and the channel which opens in the actively transporting conformation made univalent- instead of divalent-cation-selective, the model has the properties of the Na-ATPase which is observed on red cell membranes in the absence of both Na+ and K+ externally. As in the model for the Ca-ATPase the driving force for transport is generated by a change in solvent structure so that a preformed ionic equilibrium is displaced in favour of less-highly hydrated species; in this case highly hydrated Mg2+ ions displace the less highly hydrated Na+ ions from binding sites; and Na+ diffuses out through a simultaneously opened channel. With the addition of three external K+-selective sites per α-polypeptide chain, and the constraint that pump units with their external sites occupied by any univalent cation cannot be phosphorylated by ATP, the model turns out to have the properties of a Na,K-ATPase. It operates in the Na+K+ exchange, Na+Na+ exchange, K+K+ exchange, K+-dependent phosphatase, uncoupled Na+ efflux and pump reversal modes. It is concluded that if the modified water in the cleft of the phospho-enzymes has properties similar to those of water at 5°C the pump is competent to exchange three intracellular Na+ ions for two extracellular K+ ions, and one intracellular Na+ ion but it is incapable of exchanging three Na+ ions for three K+ ions.  相似文献   

15.
The cathode materials in the Na‐ion battery system are always the key issue obstructing wider application because of their relatively low specific capacity and low energy density. A graphene oxide (GO) wrapped composite, Na2Fe2(SO4)3@C@GO, is fabricated via a simple freeze‐drying method. The as‐prepared material can deliver a 3.8 V platform with discharge capacity of 107.9 mAh g?1 at 0.1 C (1 C = 120 mA g?1) as well as offering capacity retention above 90% at a discharge rate of 0.2 C after 300 cycles. The well‐constructed carbon network provides fast electron transfer rates, and thus, higher power density also can be achieved (75.1 mAh g?1 at 10 C). The interface contribution of GO and Na2Fe2(SO4)3 is recognized and studied via density function theory calculation. The Na storage mechanism is also investigated through in situ synchrotron X‐ray diffraction, and pseudocapacitance contributions are also demonstrated. The diffusion coefficient of Na+ ions is around 10?12–10?10.8 cm2 s?1 during cycling. The higher working voltage of this composite is mainly ascribed to the larger electronegativity of the element S. The research indicates that this well‐constructed composite would be a competitive candidate as a cathode material for Na‐ion batteries.  相似文献   

16.
The human α1/His101 isoform of Na,K-ATPase has been reconstituted as a complex with and without FXYD1 into proteoliposomes of various lipid compositions in order to study the effect of the regulatory subunit on the half-saturating Na+ concentration (K 1/2) of Na+ ions for activation of the ion pump. It has been shown that the fraction of negatively charged lipid in the bilayer crucially affects the regulatory properties. At low concentrations of the negatively charged lipid DOPS (<10 %), FXYD1 increases K 1/2 of Na+ ions for activation of the ion pump. Phosphorylation of FXYD1 by protein kinase A at Ser68 abrogates this effect. Conversely, for proteoliposomes made with high concentrations of DOPS (>10 %), little or no effect of FXYD1 on the K 1/2 of Na+ ions is observed. Depending on ionic strength and lipid composition of the proteoliposomes, FXYD1 can alter the K 1/2 of Na+ ions by up to twofold. We propose possible molecular mechanisms to explain the regulatory effects of FXYD1 and the influence of charged lipid and protein phosphorylation. In particular, the positively charged C-terminal helix of FXYD1 appears to be highly mobile and may interact with the cytoplasmic N domain of the α-subunit, the interaction being strongly affected by phosphorylation at Ser68 and the surface charge of the membrane.  相似文献   

17.
NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels. To understand the ion-permeation mechanism of Nav channels, we combined molecular dynamics simulation, structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh, a marine bacterial NaChBac ortholog. Two Na+ binding sites are identified in the selectivity filter (SF) in our simulations: The extracellular Na+ ion first approaches site 1 constituted by the side groups of Ser181 and Glu183, and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyl oxygens of Leu179 and Thr178. In contrast, Ca2+ ions are prone to being trapped by Glu183 at site 1, which then blocks the entrance of both Na+ and Ca2+ to the vestibule of the SF. In addition, Na+ permeates through the selective filter in an asymmetrical manner, a feature that resembles that of the mammalian Nav orthologs. The study reported here provides insights into the mechanism of ion selectivity on Na+ over Ca2+ in mammalian Nav channels.  相似文献   

18.
Developing multielectron reaction electrode materials is essential for achieving high specific capacity and high energy density in secondary batteries; however, it remains a great challenge. Herein, Na3MnTi(PO4)3/C hollow microspheres with an open and stable NASICON framework are synthesized by a spray‐drying‐assisted process. When applied as a cathode material for sodium‐ion batteries, the resultant Na3MnTi(PO4)3/C microspheres demonstrate fully reversible three‐electron redox reactions, corresponding to the Ti3+/4+ (≈2.1 V), Mn2+/3+ (≈3.5 V), and Mn3+/4+ (≈4.0 V vs Na+/Na) redox couples. In situ X‐ray diffraction results reveals that both solid‐solution and two‐phase electrochemical reactions are involved in the sodiation/desodiation processes. The high specific capacity (160 mAh g?1 at 0.2 C), outstanding cyclability (≈92% capacity retention after 500 cycles at 2 C), and the facile synthesis make the Na3MnTi(PO4)3/C a prospective cathode material for sodium‐ion batteries.  相似文献   

19.
The epithelial sodium channel is a multimeric protein formed by three homologous subunits: α, β, and γ; each subunit contains only two transmembrane domains. The level of expression of each of the subunits is markedly different in various Na+ absorbing epithelia raising the possibility that channels with different subunit composition can function in vivo. We have examined the functional properties of channels formed by the association of α with β and of α with γ in the Xenopus oocyte expression system using two-microelectrode voltage clamp and patch-clamp techniques. We found that αβ channels differ from αγ channels in the following functional properties: (a) αβ channels expressed larger Na+ than Li+ currents (INa+/ILi+ 1.2) whereas αγ channels expressed smaller Na+ than Li+ currents (INa+/ILi+ 0.55); (b) the Michaelis Menten constants (K m) of activation of current by increasing concentrations of external Na+ and Li+ of αβ channels were larger (K m > 180 mM) than those of αγ channels (K m of 35 and 50 mM, respectively); (c) single channel conductances of αβ channels (5.1 pS for Na+ and 4.2 pS for Li+) were smaller than those of αγ channels (6.5 pS for Na+ and 10.8 pS for Li+); (d) the half-inhibition constant (K i) of amiloride was 20-fold larger for αβ channels than for αγ channels whereas the K i of guanidinium was equal for both αβ and αγ. To identify the domains in the channel subunits involved in amiloride binding, we constructed several chimeras that contained the amino terminus of the γ subunit and the carboxy terminus of the β subunit. A stretch of 15 amino acids, immediately before the second transmembrane domain of the β subunit, was identified as the domain conferring lower amiloride affinity to the αβ channels. We provide evidence for the existence of two distinct binding sites for the amiloride molecule: one for the guanidium moiety and another for the pyrazine ring. At least two subunits α with β or γ contribute to these binding sites. Finally, we show that the most likely stoichiometry of αβ and αγ channels is 1α:1β and 1α:1γ, respectively.  相似文献   

20.
The NaK channel is a cation-selective protein with similar permeability for K+ and Na+ ions. Crystallographic structures are available for the wild-type and mutated NaK channels with different numbers of cation-binding sites. We have performed a comparison between the potentials of mean force governing the translocation of K+ ions and mixtures of one Na+ and three K+ ions in a mutated NaK channel with only three cation-binding sites (NaK-CNG). Since NaK-CNG is not selective for K+ over Na+, analysis of its multi-ion potential energy surfaces can provide clues about how selectivity originates. Comparison of the potentials of mean force of NaK-CNG and K+-selective channels yields observations that strongly suggest that the number of contiguous ion binding sites in a single-file mechanism is the key determinant of the channel’s selectivity properties, as already proposed by experimental studies. We conclude that the presence of four binding sites in K+-selective channels is essential for highly selective and efficient permeation of K+ ions, and that a key difference between K+-selective and nonselective channels is the absence/presence of a binding site for Na+ ions at the boundary between S2 and S3 in the context of multi-ion permeation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号