首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
The neurally active cytokine leukemia inhibitory factor (LIF) signals through a bipartite receptor complex composed of LIF receptor alpha (LIFR) and gp130. gp130 and LIFR contain consensus binding motifs for the protein tyrosine phosphatase SHP-2 surrounding tyrosines 118 and 115 (Y118 and Y115) of their cytoplasmic domains, respectively. These sites are necessary for maximal activation of mitogen-activated protein kinase (MAPK). Coexpression of catalytically inactive, but not wild-type, SHP-2 reduced LIFR- and gp130-mediated activation of MAPK up to 75%. Conversely, coexpression of the wild-type, but not catalytically inactive, SHP-1, a related phosphatase, reduced activity up to 80%, demonstrating that SHP-2 and SHP-1 have opposing effects on the MAPK pathway. Mutation of Y115 of the cytoplasmic domain of LIFR eliminates receptor-mediated tyrosine phosphorylation of SHP-2. In contrast, SHP-1 association with gp130 and LIFR is constitutive and independent of Y118 and Y115, respectively. SHP-1 has a positive regulatory role on LIF-stimulated vasoactive intestinal peptide (VIP) reporter gene expression in neuronal cells, whereas the effect of SHP-2 is negative. Furthermore, LIF-stimulated MAPK activation negatively regulates this VIP reporter gene induction. SHP-2 also negatively regulates LIF-dependent expression of choline acetyltransferase, but this regulation could be dissociated from its effects on MAPK activation. These data indicate that SHP-1 and SHP-2 are important regulators of LIF-dependent neuronal gene expression via both MAPK-dependent and -independent pathways.  相似文献   

3.
We reported recently that the choline phospholipid-binding proteins (BSP-A1/-A2, BSP-A3 and BSP-30-kDa) of bovine seminal plasma (BSP) stimulate cholesterol and choline phospholipid efflux from fibroblasts. In this study, we characterized the lipid efflux particles generated by BSP proteins. The density gradient ultracentrifugation of the efflux medium from radiolabeled fibroblasts incubated with BSP proteins showed a single peak of [3H]cholesterol between density (d) 1.12 and 1.14 g/ml, which is in the range of high-density lipoproteins. Size-exclusion chromatographic and immunoblot analysis revealed that the efflux particles have a large size equal to or bigger than very low-density lipoproteins and contained BSP proteins. Lipid analysis of density gradient and gel filtration fractions from efflux medium of simultaneously labeled fibroblasts ([3H]cholesterol and [3H]choline) incubated with BSP proteins showed that the efflux particles were homogeneous and composed of cholesterol and choline phospholipids. The lipid particles contained BSP proteins, cholesterol and choline phospholipids in molar ratio of 0.05:1.21:1, respectively. Agarose gel electrophoresis showed that the BSP-generated lipid particles had a γ migration pattern which is slower than low-density lipoproteins. The sonication of cholesterol and BSP proteins followed by gel filtration chromatographic analysis indicated no direct binding of cholesterol to BSP proteins. These results taken together indicate that BSP proteins induce a concomitant cholesterol and choline phospholipid efflux and generate large protein–lipid particles.  相似文献   

4.
The novel marine pyrrole alkaloid neolamellarin A derived from sponge has been shown to inhibit hypoxia-induced HIF-1 activity. In this work, we designed and synthesized neolamellarin A and its series of derivatives by a convergent synthetic strategy. The HIF-1 inhibitory activity and cytotoxicity of these compounds were evaluated in Hela cells by dual-luciferase reporter gene assay and MTT assay, respectively. The results showed that neolamellarin A 1 (IC50 = 10.8 ± 1.0 μM) and derivative 2b (IC50 = 11.9 ± 3.6 μM) had the best HIF-1 inhibitory activity and low cytotoxicity. Our SAR research focused on the effects of key regions aliphatic carbon chain length, aromatic ring substituents and C-7 substituent on biological activity, providing a basis for the subsequent research on the development of novel pyrrole alkaloids as HIF-1 inhibitors and design of small molecule probes for target protein identification.  相似文献   

5.
6.
7.
Acute kidney injury (AKI) is a high frequent and common complication following acute myocardial infarction (AMI). This study examined and identified the effect of AMI-induced AKI on organic anion transporter 1 (Oat1) and Oat3 transport using clinical setting of pre-renal AKI in vivo. Cardiac ischaemia (CI) and cardiac ischaemia and reperfusion (CIR) were induced in rats by 30-min left anterior descending coronary artery occlusion and 30-min occlusion followed by 120-min reperfusion, respectively. Renal hemodynamic parameters, mitochondrial function and Oat1/Oat3 expression and function were determined along with biochemical markers. Results showed that CI markedly reduced renal blood flow and pressure by approximately 40%, while these parameters were recovered during reperfusion. CI and CIR progressively attenuated renal function and induced oxidative stress by increasing plasma BUN, creatinine and malondialdehyde levels. Correspondingly, SOD, GPx, CAT mRNAs were decreased, while TNFα, IL1β, COX2, iNOS, NOX2, NOX4, and xanthine oxidase were increased. Mitochondrial dysfunction as indicated by increasing ROS, membrane depolarisation, swelling and caspase3 activation were shown. Early significant detection of AKI; KIM1, IL18, was found. All of which deteriorated para-aminohippurate transport by down-regulating Oat1 during sudden ischaemia. This consequent blunted the trafficking rate of Oat1/Oat3 transport via down-regulating PKCζ/Akt and up-regulating PKCα/NFκB during CI and CIR. Thus, this promising study indicates that CI and CIR abruptly impaired renal Oat1 and regulatory proteins of Oat1/Oat3, which supports dysregulation of remote sensing and signalling and inter-organ/organismal communication. Oat1, therefore, could potentially worsen AKI and might be a potential therapeutic target for early reversal of such injury.  相似文献   

8.
The family of staphylococcal superantigen-like proteins (SSLs) have a structure similar to bacterial superantigens but exhibit no superantigenic activity. These exoproteins have recently been shown to disturb the host immune defense system. One family member, SSL5, was reported to bind to human leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase-9 (MMP-9) and to interfere with leukocyte trafficking. In the present study, we explored human plasma proteins bound by glutathione S-transferase (GST)-tagged recombinant SSL5 (GST-SSL5) and identified plasma protease C1 inhibitor (C1Inh) as a major SSL5-binding protein based on the results of peptide mass fingerprinting analysis with MALDI-TOFMS. GST-SSL5 was found to attenuate the inhibitory activity of recombinant histidine-tagged C1Inh (C1Inh-His) toward complement C1s. We also observed that the treatment of C1Inh-His with neuraminidase markedly decreased its binding to GST-SSL5. Moreover, C1Inh-His produced by Lec2 mutant cells (deficient in sialic acid biosynthesis) showed much lower binding affinity for SSL5 than that produced by the wild-type CHO-K1 cells, as assessed by pull-down assay. These results suggest that SSL5 binds to C1Inh in a sialic acid-dependent fashion and modulates the host immune defense through perturbation of the complement system in association with S. aureus infection.  相似文献   

9.
10.
Bacteria need to be able to adapt to sudden changes in their environment, including drastic changes in the surrounding osmolarity. As part of this adaptation, the cells adjust the composition of their cytoplasmic membrane. Recent studies have shown that ubiquinones, lipid soluble molecules involved in cell respiration, are overproduced by bacteria grown in hyperosmotic conditions and it is thus believed that these molecules can provide with osmoprotection. Hereby we explore the mechanisms behind these observations. Liposomes with a lipid headgroup composition mimicking that of the cytoplasmic membrane of E. coli are used as suitable models. The effect of ubiquinone-10 (Q10) on water transport across the membranes is characterized using a custom developed fluorescence-based experimental approach to simultaneously determine the membrane permeability coefficient and estimate the elastic resistance of the membrane towards deformation. It is shown that both parameters are affected by the presence of ubiquinone-10. Solanesol, a molecule similar to Q10 but lacking the quinone headgroup, also provides with osmoprotection although it only improves the resistance of the membrane against deformation. The fluorescence experiments are complemented by cryogenic transmission electron microscopy studies showing that the E. coli membrane mimics tend to flatten into spheroid oblate structures when osmotically stressed, suggesting the possibility of lipid segregation. In agreement with its proposed osmoprotective role, the flattening process is hindered by the presence of Q10.  相似文献   

11.
Hantaviruses are the major causative agents of hemorrhagic fever with renal syndrome (HFRS) in humans, which is characterized by increased capillary permeability. Dentin matrix protein 1 (DMP1) has been shown to degrade components of the basal membrane and interendothelial junctions via matrix metalloproteinase-9. To study the changes of serum DMP1 in HFRS, we determined the concentration of DMP1 using sandwich enzyme-linked immunosorbent assay. We found that serum DMP1 concentrations increased significantly, and reached peak value during the oliguric phase and in the critical group in HFRS patients. Moreover, serum DMP1 concentrations were closely related to blood urea nitrogen, creatinine, cystatin C, and vascular endothelial growth factor (VEGF). We further explored the role of DMP1 in HTNV-infected human umbilical vein endothelial cells (HUVECs) model. Data from immunocytochemistry showed that VEGF and tumor necrosis factor-α (TNF-α) promoted the expression of DMP1 on HTNV-infected HUVECs. Results from transwell assays demonstrated that the permeability of HUVECs increased significantly after HTNV infection with the addition of DMP1, VEGF, and TNF-α. This study suggests that elevated DMP1 concentrations may be associated with disease stage, severity, and the degree of acute kidney injury. DMP1 is involved in the regulation of capillary permeability in HFRS caused by hantavirus infection.  相似文献   

12.
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.  相似文献   

13.
The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors.Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.  相似文献   

14.
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.  相似文献   

15.
Nanosecond electric pulses have been shown to open nanopores in the cell plasma membrane by fluorescent imaging of calcium uptake and fluorescent dyes, including propidium (Pr) iodide and YO-PRO-1 (YP1). Recently, we demonstrated that nsEPs also induce the phosphoinositide intracellular signaling cascade by phosphatidylinositol-4,5-bisphosphate (PIP2) depletion resulting in physiological responses similar to those observed following stimulation of Gq11-coupled receptors. In this paper, we explore the role of receptor- and store-operated calcium entry (ROCE/SOCE) mechanisms in the observed response of cells to nsEP. We show that addition of the ROCE/SOCE and transient receptor potential channel (TRPC) blocker gadolinium (Gd3+, 300 μM) slows PIP2 depletion following 1 and 20 nsEP exposures. Lipid rafts, regions of the plasma membrane rich in PIP2 and TRPC, are also disrupted by nsEP exposure suggesting that ROCE/SOCE mechanisms are likely impacted. Reducing the expression of stromal interaction molecule 1 (STIM1) protein, a key protein in ROCE and SOCE, in cells exposure to nsEP resulted in a reduction in induced intracellular calcium rise. Additionally, after exposure to 1 and 20 nsEPs (16.2 kV/cm, 5 Hz), intracellular calcium rises were significantly reduced by the addition of GD3+ and SKF-96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy] ethyl-1H-imidazole hydrochloride, 100 μM), a blocker of STIM1 interaction. However, using similar nsEP exposure parameters, SKF-96365 was less effective at reducing YP1 uptake compared to Gd3+. Thus, it is possible that SKF-96365 could block STIM1 interactions within the cell, while Gd3+ could acts on TRPC/nanopores from outside of the cell. Our results present evidence of nsEP induces ROCE and SOCE mechanisms and demonstrate that YP1 and Ca2+ cannot be used solely as markers of nsEP-induced nanoporation.  相似文献   

16.
17.
Target protein identification of bioactive small molecules is one of the most important research in forward chemical genetics. The affinity chromatography technique to use a resin bound with a small molecule is often used for identification of a target protein of a bioactive small molecule. Here we report a new method to isolate a protein targeted with a bioactive small molecule using a biotin linker with alkyne and amino groups, protein cross-linker containing disulfide bond, and a bioactive small molecule with an azido group (azido probe). After an azido probe is associated with a target protein, the complex of a target protein and azido probe is covalently bound through the biotin linker by azide-alkyne Huisgen cycloaddition and protein cross-linker containing disulfide bond. This ternary complex is immobilized on an affinity matrix with streptavidin, and then the target protein is selectively eluted with a buffer containing a reducing agent for cleavage of disulfide bonds. This method uses a probe having an azido group, which a small functional group, and has the possibility to be a solution strategy to overcome the hindrance of a functional group introduced into the probe that reduces association a target protein. The effectiveness of the method in this study was shown using linker 1, 3′-azidoabscisic acid 3, and protein cross-linker containing a disulfide bond (DTSSP 5).  相似文献   

18.
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.  相似文献   

19.
Pulmonary hypertension (PH) is characterized by a thickening of the distal pulmonary arteries caused by medial hypertrophy, intimal proliferation and vascular fibrosis. Low density lipoprotein receptor-related protein 1 (LRP1) maintains vascular homeostasis by mediating endocytosis of numerous ligands and by initiating and regulating signaling pathways.Here, we demonstrate the increased levels of LRP1 protein in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline-treated rats. Platelet-derived growth factor (PDGF)-BB upregulated LRP1 expression in pulmonary artery smooth muscle cells (PASMC). This effect was reversed by the PDGF-BB neutralizing antibody or the PDGF receptor antagonist. Depletion of LRP1 decreased proliferation of donor and IPAH PASMC in a β1-integrin-dependent manner. Furthermore, LRP1 silencing attenuated the expression of fibronectin and collagen I and increased the levels of α-smooth muscle actin and myocardin in donor, but not in IPAH, PASMC. In addition, smooth muscle cell (SMC)-specific LRP1 knockout augmented α-SMA expression in pulmonary vessels and reduced SMC proliferation in 3D ex vivo murine lung tissue cultures.In conclusion, our results indicate that LRP1 promotes the dedifferentiation of PASMC from a contractile to a synthetic phenotype thus suggesting its contribution to vascular remodeling in PH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号