首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   

2.
Distributed environmental mechanical energy is rarely collected due to its fluctuating amplitudes and low frequency, which is usually attributed as “random” energy. Considering the rapid development of the Internet of things (IoT), there is a great need for a large number of distributed and sustainable power sources. Here, a natural leaf assembled triboelectric nanogenerator (Leaf‐TENG) is designed by utilizing the green leaf as an electrification layer and electrode to effectively harvest environmental mechanical energy. The Leaf‐TENG with good adaptability has the maximum output power of ≈45 mW m?2, which is capable of driving advertising LEDs and commercial electronic temperature sensors. Besides, a tree‐shaped energy harvester is integrated with natural Leaf‐TENG to harvest large‐area environmental mechanical energy. This work provides a new prospect for distributed and environmental‐friendly power sources and has potential applications in the IoT and self‐powered systems.  相似文献   

3.
As interest in triboelectric nanogenerators (TENGs) continues to increase, some studies have reported that certain limitations exist in TENG due to high potential difference, resulting in air breakdown and field emission. In addition, with known limitations such as extremely low voltage at low external resistance, a breakthrough is required to overcome the limitations of TENG. Here, a new TENG mechanism is reported, utilizing ion‐enhanced field emission (IEFE). Using a simple IEFE‐inducing layer, which consists of a charge accumulation layer and a metal‐to‐metal contact point, electrons can flow directly to a counter electrode while generating high‐output power. Under vertical contact–separation input, the generated root mean square (RMS) power of IEFE‐TENG is 635% higher compared to conventional TENG. As the fundamental mechanism of the IEFE‐TENG is based on installing this simple IEFE‐inducing layer, the power output of existing TENGs including sliding mode types can be boosted. This new TENG mechanism can be a new standard for metal–metal contact TENGs to effectively amplify the output power and to overcome potential limitations.  相似文献   

4.
Vibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m‐2 and 1.45 W m‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.  相似文献   

5.
6.
Vibration is a common mechanical phenomenon and possesses mechanical energy in ambient environment, which can serve as a sustainable source of power for equipment and devices if it can be effectively collected. In the present work, a novel soft and robust triboelectric nanogenerator (TENG) made of a silicone rubber‐spring helical structure with nanocomposite‐based elastomeric electrodes is proposed. Such a spring based TENG (S‐TENG) structure operates in the contact‐separation mode upon vibrating and can effectively convert mechanical energy from ambient excitation into electrical energy. The two fundamental vibration modes resulting from the vertical and horizontal excitation are analyzed theoretically, numerically, and experimentally. Under the resonant states of the S‐TENG, its peak power density is found to be 240 and 45 mW m?2 with an external load of 10 MΩ and an acceleration amplitude of 23 m s?2. Additionally, the dependence of the S‐TENG's output signal on the ambient excitation can be used as a prime self‐powered active vibration sensor that can be applied to monitor the acceleration and frequency of the ambient excitation. Therefore, the newly designed S‐TENG has a great potential in harvesting arbitrary directional vibration energy and serving as a self‐powered vibration sensor.  相似文献   

7.
8.
In this article, a cylindrical direct‐current triboelectric nanogenerator (DC‐TENG) that can generate an almost constant current output with a low crest factor by phase coupling is reported for the first time. Here, the influence of phases (P) and groups (G) on the DC‐TENG is investigated. Experiments show that the crest factor of current, significantly decreases as the phases increase, and the output performance significantly increases as the groups increase. One phase triboelectric power‐generating unit of the DC‐TENG with three‐phase and five‐group (3P5G) produces an open‐circuit voltage of 149.5 V, short‐circuit current 7.3 μA, and transferred charge of 56.7 nC at 600 rpm. The DC‐TENG can produce a coupling current of 21.6 μA and the average output power of 2.04 mW after each phase output is rectified and superimposed. Additionally, the crest factor of output current is reduced to 1.08, and the high‐performance characteristics of an almost constant direct‐current is achieved. The research is of considerable significance to the practical applications of TENGs in powering sensors of low consumption.  相似文献   

9.
The advances of flexible electronics have raised demand for power sources with adaptability, flexibility, and multifunctionalities. Triboelectric nanogenerators are promising replacements for traditional batteries. Here, a highly soft skin‐like, transparent, and easily adaptable biomechanical energy harvester, based on a hybrid elastomer and with a polyionic hydrogel as the electrification layer and current collector, is developed. By harvesting the energy in human motion, the device generates an open‐circuit voltage of 70 V, a short‐circuit current density of 30.2 mA m?2, and a maximum power density of 2.79 W m?2 in a single‐electrode working mode. Further, it is demonstrated that the device can deliver power under bending, curling or by simple tapping when attached to human skin. In addition, the optimal counterpart of the polyionic layer with highest electronegativity difference is selected from a series of contact electrification materials based on a two‐electrode working mode, where a flexible device with the matching counterparts is investigated. Serving as ionic conductor and electrification layer, this polyionic material shows promising application in future development of self‐powered flexible electronics.  相似文献   

10.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.  相似文献   

11.
Wind is one of the most important sources of green energy, but the current technology for harvesting wind energy is only effective when the wind speed is beyond 3.5–4.0 m s?1. This is mainly due to the limitation that the electromagnetic generator works best at high frequency. This means that light breezes cannot reach the wind velocity threshold of current wind turbines. Here, a high‐performance triboelectric nanogenerator (TENG) for efficiently harvesting energy from an ambient gentle wind, especially for speeds below 3 m s?1 is reported, by taking advantage of the relative high efficiency of TENGs at low‐frequency. Attributed to the multiplied‐frequency vibration of ultra‐stretchable and perforated electrodes, an average output of 20 mW m?3 can be achieved with inlet wind speed of 0.7 m s?1, while an average energy conversion efficiency of 7.8% at wind speed of 2.5 m s?1 is reached. A self‐charging power package is developed and the applicability of the TENG in various light breezes is demonstrated. This work demonstrates the advantages of TENG technology for breeze energy exploitation and proposes an effective supplementary approach for current employed wind turbines and micro energy structure.  相似文献   

12.
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self‐powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.  相似文献   

13.
Triboelectric nanogenerators (TENGs) provide one of the most promising techniques for large‐scale blue energy harvesting. However, lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. In this paper, an oblate spheroidal TENG assembled by two novel TENG parts is elaborately designed for both situations. The TENG in the upper part is based on spring steel plates without other substrate materials, which makes it possible to output considerable power in rough seas and occupy small space. The TENG in the lower part consists of two copper‐coated polymer films and a rolling ball which can capture small wave energy from tranquil seas. The working mechanism and output performance are systematically studied. A maximum open‐circuit voltage of 281 V and a short‐circuit current of 76 µA can be achieved by one upper part, enough to charge a commercial capacitor for potential applications. More important, the proposed oblate spheroidal shell not only guarantees high sensitivity of the TENG in the lower part, but also qualifies the TENG with unique self‐stabilization and low consumables for the next generation of TENGs with new structural design toward all‐weather blue energy harvesting.  相似文献   

14.
Recycling of random mechanical energy in the environment has become an important research hotspot. The triboelectric nanogenerators (TENGs) were invented to harvest energy, and have been widely applied due to their simple structure, small size, and low cost. This paper reports a mechanical regulation triboelectric nanogenerator (MR‐TENG) for the first time with controllable output performance used to harvest random or irregular energy in the environment. It comprises a transmission unit, switch structure, generator unit, flywheel, and shell. Random linear motion or rocking motion is transferred via the transmission unit to the flywheel. The rotor of the generator unit fixed on the flywheel and the stator of the generator unit fixed on the shell combine. By controlling the storage and release of energy in the flywheel, the switch structure assists the flywheel to convert random or irregular energy into a controllable and stable energy output. The MR‐TENG can generate an open‐circuit voltage of 350 V, a short‐circuit current of 12 μA, a transfer charge of 130 nC, and a peak power of 2.52 mW. Furthermore, a thermometer and more than 300 light emitting diodes (LEDs) are separately powered by this MR‐TENG in simulated water waves, demonstrating its potential application in water wave energy harvesting.  相似文献   

15.
The electrical power of triboelectric nanogenerators (TENGs) is increased by surface modifications, and they can successfully power portable devices alone. However, modifying the material and its surface may limit the device lifetime, and most of the portable applications demonstrated in previous studies have excessive input conditions. In this study, a capacitor‐integrated TENG (CI‐TENG) that uses the fundamental mechanisms of the Leyden jar is developed. In this device, a long sheet metal (capacitor electrode)–polymer–metal composite (TENG electrode) is rolled inside the casing cylinder, and a capacitor unit is fabricated at the end of the sheet composite. This new operating mechanism of the CI‐TENG is analyzed in terms of the dielectric constant of the capacitor unit and the metal‐to‐metal contact between electrodes. By instantaneous charging and discharging of the capacitor unit inside the CI‐TENG, it can generate a peak open‐circuit voltage of 156 V and a peak closed‐circuit current of 4.3 mA under manual input. It charges a capacitor more than three times faster than a conventional TENG does. Furthermore, the internal impedance of the CI‐TENG is decreased to 200 kΩ without any external circuit.  相似文献   

16.
A new “wireless” paradigm for harvesting mechanical energy via a 3D‐printed wireless triboelectric nanogenerator (W‐TENG) comprised of an ecofriendly graphene polylactic acid (gPLA) nanocomposite and Teflon is demonstrated. The W‐TENG generates very high output voltages >2 kV with a strong electric field that enables the wireless transmission of harvested energy over a distance of 3 m. The W‐TENG exhibited an instantaneous peak power up to 70 mW that could be wirelessly transmitted for storage into a capacitor obviating the need for hard‐wiring or additional circuitry. Furthermore, the use of W‐TENG for wireless and secure actuation of smart‐home applications such as smart tint windows, temperature sensors, liquid crystal displays, and security alarms either with a single or a specific user‐defined passcode of mechanical pulses (e.g., Fibonacci sequence) is demonstrated. The scalable additive manufacturing approach for gPLA‐based W‐TENGs, along with their high electrical output and unprecedented wireless applications, is poised for revolutionizing the present mechanical energy harvesting technologies.  相似文献   

17.
The air breakdown phenomenon is generally considered as a negative effect in previous research on triboelectric nanogenerators (TENGs), which is always accompanied by air ionization. Here, by utilizing the air breakdown induced ionized air channel, a direct‐current triboelectric nanogenerator (DC‐TENG) is designed for harvesting contact‐separation mechanical energy. During working process, the charges first transfer from bottom to top electrodes through an external circuit in contact state, then flow back via the ionized air channel created by air breakdown in the separation process. So a unidirectional flow of electrical charges can be observed in the external circuit. With repeating contact‐separation cycles, continuous pulsed DC output through the external circuit can be realized. This working mechanism was verified by real‐time electrode potential monitoring, photocurrent signal detection, and controllable discharging observation. The DC‐TENG can be used for directly and continuously charging an energy storage unit and/or driving electronic devices without using a bridge rectifier. Owing to its simplicity in structure, the mechanism is further applied to fabricate the first flexible DC‐TENG. This research provides a significant fundamental study for DC‐TENG technology and may expand its application in flexible electronics and flexible self‐charging power systems.  相似文献   

18.
Vibration in mechanical equipment can serve as a sustainable energy source to power sensors and devices if it can be effectively collected. In this work, a honeycomb structure inspired triboelectric nanogenerator (HSI‐TENG) consisting of two copper electrode layers with sponge bases and one honeycomb frame filled with polytetrafluoroethylene (PTFE) balls is proposed to harvest vibration energy. The application of a compact honeycomb structure increases the maximum power density of HSI‐TENG by 43.2% compared to the square grid structure and provides superior advantages in large‐scale manufacturing. More importantly, the nonspring‐assisted HSI‐TENG can generate electricity once the PTFE balls obtain sufficient kinetic energy to separate from the bottom electrode layer regardless of the vibration frequency and direction. This is fundamentally different from the spring‐assisted harvesters that can only work around their natural frequencies. The vibration model and working criteria of the HSI‐TENG are established. Furthermore, the HSI‐TENG is successfully used to serve as a self‐powered sensor to monitor engine conditions by analyzing the electrical output of the HSI‐TENG installed on a diesel engine. Therefore, the nonspring‐assisted HSI‐TENG provides a novel strategy for highly effective vibration energy harvesting and self‐powered machinery monitoring.  相似文献   

19.
20.
Wireless electric energy transmission is an important energy supply technology. However, most wireless energy supply based on electromagnetic induction cannot be used for energy transmission through a metal chamber. Herein, a novel idea for wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator (TENG) is presented. The electric energy is first transformed into mechanical vibration energy in mechanical wave that can propagate well in solid medium, and then the vibration energy is harvested by a TENG. By employing the spring steel sheets and freestanding triboelectric‐layer structure, the vibration TENG as an energy conversion unit has the advantages of high efficiency and facilitation, boosting this wireless energy transmission technology to be an alternative way of delivering electric energy through metal medium. The working principle and output performance have been systematically studied. A commercial capacitor can be charged from 0 to 10 V in 33 and 86 s isolated by an acrylic plate and a copper plate in thickness of 3 mm, respectively. The wireless electric transmission technology is also applied to deliver electric energy into a vacuum glove box and across glass wall successfully. This novel technology has great potential applications in implantable microelectronic devices, encrypted wireless communication, and even nondestructive testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号