首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium ion batteries (LIBs) continuously prove themselves to be the main power source in consumer electronics and electric vehicles. To ensure environmental sustainability, LIBs must be capable of performing well at extreme temperatures, that is, between ?40 and 60 °C. In this review, the recent important progress and advances in the subzero and elevated temperature operations of LIBs is comprehensively summarized from a materials perspective. In the scenario of subzero temperatures, limitations, electrolytes, anodes, and solid electrolyte interphase (SEI); cathodes and cathode electrolyte interphase (CEI); and binders are thoroughly discussed to explore the fundamentals and basics that underlie the decay in electrochemical performance and how the chemistry, physics, and electrochemistry are correlated with the materials and components that interact with each other. In the case of high temperatures limitations, the thermal stability of the key materials and components are reviewed, and then the reaction thermodynamics and kinetics of the anodes, cathodes, electrolytes, and their interactions are described using the highest occupied molecular orbit (HOMO)/lowest unoccupied molecular orbit (LUMO), and are extensively discussed. The prospect of combining the extreme temperature poles in a single cell by introducing appropriate electrolytes and additives is discussed.  相似文献   

2.
3.
The formation of the solid electrolyte interphase (SEI) on Si is examined in detail using several in situ techniques. The results show that employing different conditions during the first lithiation cycle produces SEI films with substantially different properties. Longer time at higher potentials produces softer SEI, whereas inorganic phases produced at lower potentials have higher elastic moduli. The SEI thickness stabilizes during the first cycle; however, the SEI resistance decreases during the first 20 cycles (in sharp contrast to typical surface passivation processes, where resistance is expected to increase with time). This behavior is consistent with the slow growth of inorganic constituents at lower potentials, inside of a mesoporous soft SEI that initially forms at higher potentials. This interpretation is based on the premise that these inorganic phases have a lower resistivity than that associated with electrolyte transport through the mesoporous organic phase. Based on this set of observations, the multiphase structure that evolves during initial cycling determines critical electrochemical and mechanical properties of the SEI. A basic model of these tradeoffs is proposed to provide guidelines for creating more stable interfacial films.  相似文献   

4.
5.
Carbon materials are the most promising anodes for sodium‐ion batteries (SIBs), but low initial Coulombic efficiency (ICE) and poor cyclic stability hinder their practical use. It is shown herein, that an effective but simple remedy for these problems can be achieved by deactivating defects in the carbon with Al2O3 nanocluster coverage. A 3D porous graphene monolith (PGM) is used as the model material and Al2O3 nanoclusters around 1 nm are grown on the defects of graphene. It is shown that these Al2O3 nanoclusters suppress the decomposition of conductive sodium salt in the electrolyte, resulting in the formation of a thin and homogenous solid electrolyte interphase (SEI). In addition, Al2O3 nanoclusters appear to reduce the detrimental etching of the SEI by hydrogen fluoride (HF) and improve its stability. Therefore, after the introduction of Al2O3 nanoclusters, the ICE, cyclic stability, and rate capability of the PGM are greatly improved. A higher ICE (70.2%) and capacity retention (82.9% after 500 cycles at 0.5 A g?1) than those of normally reported for large surface area carbons are achieved. This work indicates a new way to deactivate defects and modify the SEI of carbon materials, and hopefully accelerate the commercialization of carbon materials as anode materials for SIBs.  相似文献   

6.
7.
Ultrahigh‐Ni layered oxides hold great promise as high‐energy‐density cathodes at an affordable cost for lithium‐ion batteries, yet their practical application is greatly hampered by the poor cyclability. Herein, by employing LiNi0.94Co0.06O2 as a model cathode in a full‐cell configuration, the interphasial and structural evolution processes of ultrahigh‐Ni layered oxides are systematically investigated over the course of their service life (1500 cycles). By applying advanced analytic techniques (e.g., Li‐isotope labeling, region‐of‐interest method), the dynamic chemical evolution on the cathode surface is revealed with spatial resolution, and the correlation between lattice distortion and cathode surface reactivity is established. Benefiting from in situ X‐ray diffraction (XRD) analysis, the ultrahigh‐Ni layered oxide is demonstrated to undergo dual‐phase reaction mechanisms with huge lattice variation, which leads to a decrease in crystallinity and secondary particle pulverization. Furthermore, the critical impact of cathode surface reaction on the graphite anode–electrolyte interphase (AEI) is revealed at nanometer scale, and a universal chemical/physical evolution process of the AEI is illustrated, for the first time. Finally, the practical viability of ultrahigh‐Ni layered oxides is demonstrated through Al‐doping strategy. This work presents a comprehensive understanding of the structural and interphasial degradation of ultrahigh‐Ni layered oxide cathodes for developing high‐energy‐density lithium‐ion batteries.  相似文献   

8.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

9.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

10.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   

11.
12.
Rechargeable magnesium ion batteries are interesting as one of the alternative metal ion battery systems to lithium ion batteries due to the wide availability and accessibility of magnesium in the earth's crust. On the one hand, electrolyte solutions in which Mg metal anodes are fully reversible are not suitable for the use of high voltage/high capacity transition metal oxide cathodes due to complex surface phenomena. On the other hand, Mg metal anodes cannot work reversibly in conventional electrolyte solutions in which high voltage/high capacity Mg insertion cathodes can work because of passivation phenomena that fully block them. Replacing Mg metal with alternative anodes that can work reversibly in conventional electrolyte solutions could provide a promising route to elaborate high voltage and high capacity rechargeable Mg battery systems. Herein, the recent progress in alloy anodes based on group IIIA, IVA, VA elements is summarized. The theoretical evaluations, achievable capacities, synthetic strategies, battery test configurations, electrochemical properties, and underlying reaction mechanisms are systematically summarized and discussed. The key issues and challenges impeding their current use are identified and some valuable suggestions for their future development as practical reversible anodes for Mg batteries are provided.  相似文献   

13.
14.
The spatial distribution and transport characteristics of lithium ions (Li+) in the electrochemical interface region of a lithium anode in a lithium ion battery directly determine Li+ deposition behavior. The regulation of the Li+ solvation sheath on the solid electrolyte interphase (SEI) by electrolyte chemistry is key but challenging. Here, 1 m lithium trifluoroacetate (LiTFA) is induced to the electrolyte to regulate the Li+ solvation sheath, which significantly suppresses Li dendrite formation and enables a high Coulombic efficiency of 98.8% over 500 cycles. With its strong coordination between the carbonyl groups (C?O) and Li+, TFA? modulates the environment of the Li+ solvation sheath and facilitates fast desolvation kinetics. In addition, due to relatively smaller lowest unoccupied molecular orbital energy than solvents, TFA? has a preferential reduction to produce a stable SEI with uniform distribution of LiF and Li2O. Such stable SEI effectively reduces the energy barrier for Li+ diffusion, contributing to low nucleation overpotential, fast ion transfer kinetics, and uniform Li+ deposition with high cycling stability. This work provides an alternative insight into the design of interface chemistry in terms of regulating anions in the Li+ solvation sheath. It is anticipated that this anion‐tuned strategy will pave the way to construct stable SEIs for other battery systems.  相似文献   

15.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

16.
Calendar aging of lithium metal batteries, in which cells' components degrade internally due to chemical reactions while no current is being applied, is a relatively unstudied field. In this work, a model to predict calendar aging of lithium metal cells is developed using two sets of readily obtainable data: solid electrolyte interphase (SEI) layer composition (measured via X‐ray photoelectron spectroscopy) and SEI stability (measured as a degradation rate using a simple constant current–constant voltage charging protocol). Electrolyte properties such as volume and salt concentration are varied in order to determine their effect on SEI stability and composition, with subsequent impacts to calendar aging. Lower salt concentrations produce a solvent‐based, more soluble SEI, while the highest concentration produces a salt‐based, less soluble SEI. Higher electrolyte volumes promote dissolution of the SEI and thus decrease its stability. The model predicts that lithium metal would be the limiting factor in calendar aging, depleting long before the electrolyte does. Additionally, the relative composition of the electrolyte during aging is modeled and found to eventually converge to the same value independent of initial salt concentration.  相似文献   

17.
Development of high performance lithium‐ion (Li‐ion) power packs is a topic receiving significant attention in research today. Future development of the Li‐ion power packs relies on the development of high capacity and high rate anodes. More specifically, materials undergo either conversion or an alloying mechanism with Li. However, irreversible capacity loss (ICL) is one of the prime issues for this type of negative electrode. Traditional insertion‐type materials also experience ICL, but it is considered negligible. Therefore, eliminating ICL is crucial before the fabrication of practical Li‐ion cells with conventional cathodes such as LiFePO4, LiMn2O4, etc. There are numerous methods for eliminating ICL such as pre‐treating the electrode, usage of stabilized Li metal powder, chemical and electrochemical lithiation, sacrificial salts for both anode and cathode, etc. The research strategies that have been explored are reviewed here in regards to the elimination of ICL from the high capacity anodes as described. Additionally, mitigating ICL observed from the carbonaceous anodes is discussed and compared.  相似文献   

18.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号