首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fiber‐based flexible thermoelectric energy generators are 3D deformable, lightweight, and desirable for applications in large‐area waste heat recovery, and as energy suppliers for wearable or mobile electronic systems in which large mechanical deformations, high energy conversion efficiency, and electrical stability are greatly demanded. These devices can be manufactured at low or room temperature under ambient conditions by established industrial processes, offering cost‐effective and reliable products in mass quantity. This article presents a critical overview and review of state‐of‐the‐art fiber‐based thermoelectric generators, covering their operational principle, materials, device structures, fabrication methods, characterization, and potential applications. Scientific and practical challenges along with critical issues and opportunities are also discussed.  相似文献   

2.
As the worldwide energy crisis is worsened, thermoelectric materials that can harvest low-grade waste heat and directly convert it into electricity provide promising alternative energy sources. Emerging ionic thermoelectrics (iTEs) have recently attracted widespread attention thanks to their impressively high thermopower that can reach hundreds of times more than conventional electronic thermoelectrics (eTEs). Based on the Soret effect, the performances of iTEs depend on the thermo-diffusion of mobile ions in electrolytes, resulting in electrical characteristics distinct from eTE materials and opening up additional potential applications of thermoelectrics. Among these materials, organics-based iTEs (i-OTEs) provide unique advantages such as low-cost, light-weight, and eco-friendliness, thereby offering more promising application scenarios that can utilize dissipated heat, for example, from human bodies or mobile devices. This concise review begins with the comparison of iTE and eTE, and then discusses their different mechanisms and applied devices in detail. Next, the recent advances of i-OTEs will be in-depth highlighted, including the merits and weaknesses of representative types of materials, effects of additives, and effective strategies for performance optimization. Finally, the state-of-the-art achievements of i-OTEs are summarized, and an overview is provided of the existing challenges and an outlook of prospective development and applications in future efforts.  相似文献   

3.
Thermoelectric (TE) materials have the capability of converting heat into electricity, which can improve fuel efficiency, as well as providing robust alternative energy supply in multiple applications by collecting wasted heat, and therefore, assisting in finding new energy solutions. In order to construct high performance TE devices, superior TE materials have to be targeted via various strategies. The development of high performance TE devices can broaden the market of TE application and eventually boost the enthusiasm of TE material research. This review focuses on major novel strategies to achieve high‐performance TE materials and their applications. Manipulating the carrier concentration and band structures of materials are effective in optimizing the electrical transport properties, while nanostructure engineering and defect engineering can greatly reduce the thermal conductivity approaching the amorphous limit. Currently, TE devices are utilized to generate power in remote missions, solar–thermal systems, implantable or/wearable devices, the automotive industry, and many other fields; they are also serving as temperature sensors and controllers or even gas sensors. The future tendency is to synergistically optimize and integrate all the effective factors to further improve the TE performance, so that highly efficient TE materials and devices can be more beneficial to daily lives.  相似文献   

4.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   

5.
Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S2σT)/κ (S Seebeck coefficient, σ electrical conductivity, κ thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk‐materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high‐performance thermoelectrics for high‐temperature applications is discussed at the end.  相似文献   

6.
Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes.  相似文献   

7.
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology – including embryonic and adult stem cells and induced pluripotent stem cells – clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE‐Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem‐cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour‐related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.  相似文献   

8.
The current century marks an inflection point for human progress, as the developed world increasingly comes to recognize that the ecological and socioeconomic impacts of resource extraction must be balanced with more sustainable modes of growth that are less reliant on non-renewable sources of energy and materials. This has opened a window of opportunity for cross-sector development of biotechnologies that harness the metabolic problem-solving power of microbial communities. In this context, recovery has emerged as an organizing principal to create value from industrial and municipal waste streams, and the search is on for new enzymes and platforms that can be used for waste resource recovery at scale. Enzyme surface display on cells or functionalized materials has emerged as a promising platform for waste valorization. Typically, surface display involves the use of substrate binding or catalytic domains of interest translationally fused with extracellular membrane proteins in a microbial chassis. Novel display systems with improved performance features include S-layer display with increased protein density, spore display with increased resistance to harsh conditions, and intracellular inclusions including DNA-free cells or nanoparticles with improved social licence for in situ applications. Combining these display systems with advances in bioprinting, electrospinning and high-throughput functional screening have potential to transform outmoded extractive paradigms into ‘trans-metabolic” processes for remediation and waste resource recovery within an emerging circular bioeconomy.  相似文献   

9.
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.  相似文献   

10.
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.  相似文献   

11.
As a promising thermoelectric material, higher manganese silicides are composed of earth‐abundant and eco‐friendly elements, and have attracted extensive attention for future commercialization. In this review, the authors first summarize the crystal structure, band structure, synthesis method, and pristine thermoelectric performance of different higher manganese silicides. After that, the strategies for enhancing electrical performance and reducing lattice thermal conductivity of higher manganese silicides as well as their synergism are highlighted. The application potentials including the chemical and mechanical stability of higher manganese silicides and their energy conversion efficiency of the assembled thermoelectric modules are also summarized. By analyzing the current advances in higher manganese silicides, this review proposes that potential methods of further enhancing zT of higher manganese silicides, lie in enhancing electrical performance while simultaneously reducing lattice thermal conductivity via reducing effective mass, optimizing carrier concentration, and nanostructure engineering.  相似文献   

12.
Electrochemical energy storage is of extraordinary importance for fulfilling the utilization of renewable and sustainable energy sources. There is an increasing demand for energy storage devices with high energy and power densities, prolonged stability, safety, and low cost. In the past decade, numerous research efforts have been devoted to achieving these requirements, especially in the design of advanced electrode materials. Hollow carbon spheres (HCS) derived nanomaterials combining the advantages of 3D HCS and porous structures have been considered as alternative electrode materials for advanced energy storage applications, due to their unique features such as high surface‐to‐volume ratios, encapsulation capability, together with outstanding chemical and thermal stability. In this review, the authors first present a comprehensive overview of the synthetic strategies of HCS, and elucidate the design and synthesis of HCS‐derived nanomaterials including various types of HCS and their nanohybrids. Additionally, their significant roles as electrode materials for supercapacitors, lithium‐ion or sodium‐ion batteries, and sulfur hosts for lithium sulfur batteries are highlighted. Finally, current challenges in the synthesis of HCS and future directions in HCS‐derived nanomaterials for energy storage applications are proposed.  相似文献   

13.
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology.  相似文献   

14.
Background, aim, and scope  Management of the medical waste produced in hospitals or health care facilities has raised concerns relating to public health, occupational safety, and the environment. Life cycle assessment (LCA) is a decision-supporting tool in waste management practice; but relatively little research has been done on the evaluation of medical waste treatment from a life cycle perspective. Our study compares the environmental performances of two dominant technologies, hazardous waste incineration (HWI) as a type of incineration technology and steam autoclave sterilization with sanitary landfill (AL) as a type of non-incineration technology, for specific medical waste of average composition. The results of this study could support the medical waste hierarchy. Materials and methods  This study implemented the ISO 14040 standard. Data on steam autoclave sterilization were obtained from an on-site operations report, while inventory models were used for HWI, sanitary landfill, and residues landfill. Background data were from the ecoinvent database. The comparative LCA was carried out for five alternatives: HWI with energy recovery efficiencies of 0%, 15%, and 30% and AL with energy recovery efficiencies of 0% and 10%. Results  The assumptions on the time frame for landfill markedly affect the impact category scores; however, the orders of preference for both time frames are almost the same. HWI with 30% energy recovery efficiency has the lowest environmental impacts for all impact categories, except freshwater ecotoxicity. Incineration and sanitary landfill processes dominate global warming, freshwater aquatic ecotoxicity, and eutrophication of incineration and non-incineration alternatives, respectively. Dioxin emissions contribute about 10% to human toxicity in HWI without energy recovery alternatives, and a perturbation analysis yielded identical results. As regards eutrophication, non-incineration treatments have an approximately sevenfold higher impact than incineration treatments. Discussion  The differences between short-term and long-term time frame assumptions mainly are decided by heavy metals dissolved in the future leachate. The high heat value of medical waste due to high contents of biomass, plastic, and rubber materials and a lower content of ash, results in a preference for incineration treatments. The large eutrophication difference between incineration and non-incineration treatments is caused by different N element transformations. Dioxin emission from HWI is not the most relevant to human toxicity; however, large uncertainties could exist. Conclusions  From a life cycle perspective, the conventional waste hierarchy, implying incineration with energy recovery is better than landfill, also applies to the case of medical waste. The sanitary landfill process is the key issue in non-incineration treatments, and HWI and the subsequent residues landfill processes are key issues in incineration treatments. Recommendations and perspectives  Integrating the medical waste hierarchy and constructing a medical waste framework require broader technologies to be investigated further, based on a life cycle approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Establishing renewable energy sources is currently one of the major scientific topics. Two aspects are most crucial: energy conversion and energy storage. Thus, the development of efficient solar‐cell devices and high‐capacity, high‐current rechargeable battery systems turns out to be of great importance. In particular, the design of active materials and their characterization using electrochemical and spectroscopic means represent essential elements in the development process. Here, a concise overview of both methods and key properties with regard to the characterization of organic and polymeric active materials with a focus on energy conversion/storage is provided. Benefits and limitations of complementary techniques are presented to enable a consistent and comprehensive characterization procedure.  相似文献   

16.
T Bilgin  A Wagner 《PloS one》2012,7(6):e39903
A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design.  相似文献   

17.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

18.
Half‐Heusler (HH) compounds are important high temperature thermoelectric (TE) materials and have attracted considerable attention in the recent years. High figure of merit zT values of 0.8 to 1.0 have been obtained in n‐type ZrNiSn‐based HH compounds. However, developing high performance p‐type HH compounds are still a big challenge. Here, it is shown that a new p‐type HH alloy with a high band degeneracy of 8, Ti‐doped FeV0.6Nb0.4Sb, can achieve a high zT of 0.8, which is one of the highest reported values in the p‐type HH compounds. Although the band effective mass of this system is found to be high, which may lead to a low mobility, its low deformation potential and low alloy scattering potential both contribute to a reasonably high mobility. The enhanced phonon scattering by alloying leads to a reduced lattice thermal conductivity. The achieved high zT demonstrates that the p‐type Ti doped FeV0.6Nb0.4Sb HH alloys are promising as TE materials and offer an excellent TE performance match with n‐type ones for high temperature power generation.  相似文献   

19.
Anaerobic treatment processes have the advantages of cost-effectiveness, energy efficiency, low sludge yield and potential of resource recovery over conventional aerobic treatment methods and have been gaining increasing attention as an approach for future wastewater management. An important feature of anaerobic processes is the use of alternative electron acceptors to oxygen, which renders treatment flexibility in using redox active elements such as iron and sulfate from other waste materials. Co-treatment of acid mine drainage and municipal wastewater, as an example, has been shown to be an effective method for removing organic materials, metals, and phosphate from the both wastes. It also suggested the applicability of ferric reduction process in wastewater treatment. Most of the previous studies on ferric reduction process and iron reducers were conducted in natural systems such as sediments, soils and groundwater. This paper reviews the significance and fundamentals of the ferric reduction process, its utility for organics oxidation, controlling factors, reaction kinetics, microbial processes of iron reduction and its ecology. The paper also evaluates the suitability and discusses future aspects of using iron reduction for wastewater treatment. Knowledge gaps are identified in this paper for developing such innovative wastewater technology and process optimization.  相似文献   

20.

Purpose

The aim of this research was to determine the optimum way of recovering energy from the biodegradable fractions of municipal waste. A part-life cycle study was carried out on the following wastes: paper, food waste, garden waste, wood, non-recyclable mixed municipal waste and refuse-derived fuel. The energy recovery processes considered were incineration, gasification, combustion in dedicated plant, anaerobic digestion and combustion in a cement kiln.

Methods

The life cycle assessment (LCA) was carried out using WRATE, an LCA tool designed specifically for waste management studies. Additional information on waste composition, waste collection and the performance of the energy recovery processes was obtained from a number of UK-based sources. The results take account of the energy displaced by the waste to energy processes and also the benefits obtained by the associated recycling of digestates, metals and aggregates as appropriate.

Results and discussion

For all the waste types considered the maximum benefits in terms of climate change and non-renewable resource depletion would be achieved by using the waste in a cement kiln as a substitute fuel for coal. When considering the impacts in terms of human toxicity, aquatic ecotoxicity, acidification and eutrophication, direct combustion with energy recovery was the best option. The results were found to be highly sensitive to the efficiency of the energy recovery process and the conventional fuel displaced by the recovered energy.

Conclusions and recommendations

This study has demonstrated that LCA can be used to determine the benefits and burdens associated with recovering energy from municipal waste fractions. However, the findings were restricted by the lack of reliable data on the performance of waste gasification and anaerobic digestion systems and on the burdens arising from collecting the wastes. It is recommended that further work is carried out to address these data gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号