首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium‐ion batteries (SIBs) have the potential to be practically applied in large‐scale energy storage markets. The rapid progress of SIBs research is primarily focused on electrodes, while electrolytes attract less attention. Indeed, the improvement of electrode performance is arguably correlated with the electrolyte optimization. In conventional lithium‐ion batteries (LIBs), ether‐based electrolytes are historically less practical owing to the insufficient passivation of both anodes and cathodes. As an important class of aprotic electrolytes, ethers have revived with the emerging lithium‐sulfur and lithium‐oxygen batteries in recent years, and are even booming in the wave of SIBs. Ether‐based electrolytes are unique to enabling these new battery chemistries in terms of producing stable ternary graphite intercalation compounds, modifying anode solid electrolyte interphases, reducing the solubility of intermediates, and decreasing polarization. Better still, ether‐based electrolytes are compatible with specific inorganic cathodes and could catalyze the assembly of full SIBs prototypes. This Research News article aims to summarize the recent critical reports on ether‐based electrolytes in sodium‐based batteries, to unveil the uniqueness of ether‐based electrolytes to advancing diverse electrode materials, and to shed light on the viability and challenges of ether‐based electrolytes in future sodium‐based battery chemistries.  相似文献   

2.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

3.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

4.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

5.
Interfacial chemistry between lithium metal anodes and electrolytes plays a vital role in regulating the Li plating/stripping behavior and improving the cycling performance of Li metal batteries. Constructing a stable solid electrolyte interphase (SEI) on Li metal anodes is now understood to be a requirement for progress in achieving feasible Li‐metal batteries. Recently, the application of novel analytical tools has led to a clearer understanding of composition and the fine structure of the SEI. This further promoted the development of interface engineering for stable Li metal anodes. In this review, the SEI formation mechanism, conceptual models, and the nature of the SEI are briefly summarized. Recent progress in probing the atomic structure of the SEI and elucidating the fundamental effect of interfacial stability on battery performance are emphasized. Multiple factors including current density, mechanical strength, operating temperature, and structure/composition homogeneity that affect the interfacial properties are comprehensively discussed. Moreover, strategies for designing stable Li‐metal/electrolyte interfaces are also reviewed. Finally, new insights and future directions associated with Li‐metal anode interfaces are proposed to inspire more revolutionary solutions toward commercialization of Li metal batteries.  相似文献   

6.
This study presents a battery concept with a “mediator‐ion” solid electrolyte for the development of next‐generation electrochemical energy storage technologies. The active anode and cathode materials in a single cell can be in the solid, liquid, or gaseous form, which are separated by a sodium‐ion solid‐electrolyte separator. The uniqueness of this mediator‐ion strategy is that the redox reactions at the anode and the cathode are sustained by a shuttling of a mediator sodium ion between the anolyte and the catholyte through the solid‐state electrolyte. Use of the solid‐electrolyte separator circumvents the chemical‐crossover problem between the anode and the cathode, overcomes the dendrite‐problem when employing metal‐anodes, and offers the possibility of using different liquid electrolytes at the anode and the cathode in a single cell. The battery concept is demonstrated with two low‐cost metal anodes (zinc and iron), two liquid cathodes (bromine and potassium ferricyanide), and one gaseous cathode (air/O2) with a sodium‐ion solid electrolyte. This novel battery strategy with a mediator‐ion solid electrolyte is applicable to a wide range of electrochemical energy storage systems with a variety of cathodes, anodes, and mediator‐ion solid electrolytes.  相似文献   

7.
With the most recent development of ultrahigh capacity anodes, such as Li‐ or Si‐based anodes, metal fluorides hold promise as complementary high‐capacity conversion cathode materials for next‐generation energy storage devices. Despite their higher theoretical energy density compared to cells with sulfur cathodes, these materials have received dramatically less attention and little is understood about the origins of their electrochemical behavior. Here, the successful methodology to produce highly uniform size‐controlled mixed metal difluoride nanocomposites is reported. It is discovered that such materials undergo reduction in a single step with a reduction potential intermediate to those for the corresponding single‐metal difluorides and that a solid solution is reformed upon charging, which is advantageous for practical applications. For the first time the progressive formation of metal trifluorides upon repeated cycling of difluorides is reported. Systematic electrochemical measurements in combination with postmortem analyses lead to the conclusion that the cathode stability strongly depends on the ability to prevent formation and growth of a resistive cathode solid electrolyte interphase, which, in turn, strongly depends on the metal composition. This methodology and new findings will help to elucidate a path to developing metal fluoride–based commercial Li‐ion batteries and provide guidelines for material selection.  相似文献   

8.
Lithium/selenium‐sulfur batteries have recently received considerable attention due to their relatively high specific capacities and high electronic conductivity. Different from the traditional encapsulation strategy for suppressing the shuttle effect, an alternative approach to directly bypass polysulfide/polyselenide formation via rational solid‐electrolyte interphase (SEI) design is demonstrated. It is found that the robust SEI layer that in situ forms during charge/discharge via interplay between rational cathode design and optimal electrolytes could enable solid‐state (de)lithiation chemistry for selenium‐sulfur cathodes. Hence, Se‐doped S22.2Se/Ketjenblack cathodes can attain a high reversible capacity with minimal shuttle effects during long‐term and high rate cycling. Moreover, the underlying solid‐state (de)lithiation mechanism, as evidenced by in situ 7Li NMR and in operando synchrotron X‐ray probes, further extends the optimal sulfur confinement pore size to large mesopores and even macropores that have been long considered as inferior sulfur or selenium host materials, which play a crucial role in developing high volumetric energy density batteries. It is expected that the findings in this study will ignite more efforts to tailor the compositional/structure characteristics of the SEI layers and the related ionic transport across the interface by electrode structure, electrolyte solvent, and electrolyte additive screening.  相似文献   

9.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   

10.
As an alternative to commercial Ni‐ and Co‐based intercalation‐type cathode materials, conversion‐type metal fluoride (MFx) cathodes are attracting more interest due to their promises to increase cell‐level energy density when coupled with lithium (Li) or silicon (Si)‐based anodes. Among metal fluorides, iron fluorides (FeF2 and FeF3) are regarded as some of the most promising candidates due to their high capacity, moderately high potential and the very low cost of Fe. In this study, the impacts of electrolyte composition on the performance and stability of nanostructured FeF2 cathodes are systematically investigated. Dramatic impacts of Li salt composition, Li salt concentration, solvent composition, and cycling potential range on the cathode's most critical performance parameters—stability, capacity, rate, and voltage hysteresis are discovered. In contrast to previous beliefs, it is observed that even if the Fe2+ cation dissolution could be avoided, the dissolution of F? anions may still negatively affect cathode performance. Formation of the more favorable cathode solid electrolyte interface (CEI) is found to minimize both processes.  相似文献   

11.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

12.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

13.
A novel combination of hard carbon anode sodium pre‐loading and a tailored electrolyte is used to prepare room temperature sodium‐sulfur full cell batteries. The electrochemical loading with sodium ions is realized in a specific mixture of diethyl carbonate, ethylene carbonate, and fluoroethylene carbonate electrolyte in order to create a first solid electrolyte interface (SEI) on the anode surface. Combining such anodes with a porous carbon/sulfur composite cathode results in full cells with a significantly decreased polysulfide shuttle when compared to half cells combined with metallic sodium anodes. Further optimization involves the use of Na2S/P2S5 doped tetraethylene glycol dimethyl ether based electrolyte in the full cell for the formation of a second SEI, reducing polysulfide shuttle even further. More importantly, the electrochemical discharge processes in the cell are improved by adding this dissolved complexation agent to the electrolyte. As a result of this combination sodium‐sulfur cells with tailored cathode materials and electrolytes can achieve high discharge capacities up to 980 mAh g?1sulfur and 1000 cycles with 200 mAh g?1sulfur remaining capacity, at room temperature.  相似文献   

14.
As the pursuit of greater energy density for the portable battery has stimulated exhaustive research in high-voltage lithium-ion batteries (LIBs), developing electrolyte additives is considered a cost-efficient way to improve the performance of the battery. Here, the three interactional issues of LiCoO2 (LCO) batteries in commercial electrolytes at high voltage are summarized, this review first identifies an unavoidable vicious cycle of the commercial electrolyte at high voltage. LCO/electrolyte interphase break, dissolution of transition metal (TM) ions, and formation of harmful HF accelerate the failing progress of the commercial electrolyte at high voltage, besides the malfunction of anode happens at the same time because of electrode crosstalk. Then, the modification of the commercial electrolyte is summarized according to the solutions of this vicious cycle. Last, a framework for future research on high-voltage LCO batteries is outlined.  相似文献   

15.
Potassium‐ion batteries (PIBs) are promising energy storage systems because of the abundance and low cost of potassium. The formidable challenge is to develop suitable electrode materials and electrolytes for accommodating the relatively large size and high activity of potassium. Herein, Bi‐based materials are reported as novel anodes for PIBs. Nanostructural design and proper selection of the electrolyte salt have been used to achieve excellent cycling performance. It is found that the potassiation of Bi undergoes a solid‐solution reaction, followed by two typical two‐phase reactions, corresponding to Bi ? Bi(K) and Bi(K) ? K5Bi4 ? K3Bi, respectively. By choosing potassium bis(fluorosulfonyl)imide (KFSI) to replace potassium hexafluorophosphate (KPF6) in carbonate electrolyte, a more stable solid electrolyte interphase layer is achieved and results in notably enhanced electrochemical performance. More importantly, the KFSI salt is very versatile and can significantly promote the electrochemical performance of other alloy‐based anode materials, such as Sn and Sb.  相似文献   

16.
Hard carbon (HC) is recognized as a promising anode material with outstanding electrochemical performance for alkali metal-ion batteries including lithium-ion batteries (LIBs), as well as their analogs sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Herein, a comprehensive review of the recent research is presented to interpret the challenges and opportunities for the applications of HC anodes. The ion storage mechanisms, materials design, and electrolyte optimizations for alkali metal-ion batteries are illustrated in-depth. HC is particularly promising as an anode material for SIBs. The solid-electrolyte interphase, initial Coulombic efficiency, safety concerns, and all-climate performances, which are vital for practical applications, are comprehensively discussed. Furthermore, commercial prototypes of SIBs based on HC anodes are extensively elaborated. The remaining challenges and research perspectives are provided, aiming to shed light on future research and early commercialization of HC-based SIBs.  相似文献   

17.
Research activities related to the development of negative electrodes for construction of high‐performance Li‐ion batteries (LIBs) with conventional cathodes such as LiCoO2, LiFePO4, and LiMn2O4 are described. The anode materials are classified in to three main categories, insertion, conversion, and alloying type, based on their reactivity with Li. Although numerous materials have been proposed (i.e., for half‐cell assembly), few of them have reached commercial applications, apart from graphite, Li4Ti5O12, Si, and Sn‐Co‐C. This clearly demonstrates that full‐cell studies are desperately needed rather than just characterizing materials in half‐cell assemblies. Additionally, the performance of such anodes in practical Li‐ion configurations (full‐cell) is much more important than merely proposing materials for LIBs. Irreversible capacity loss, huge volume variation, unstable solid electrolyte interface layer formation, and poor cycleability are the main issues for conversion and alloy type anodes. This review addresses how best to circumvent the mentioned issues during the construction of Li‐ion cells and the future prospects of such anodes are described in detail.  相似文献   

18.
Li metal is an ideal anode material for rechargeable high energy density batteries, but its sensitivity to humid air and uncontrolled dendrite growth limit its practical applications. A novel hybrid interphase is fabricated to address these issues. This interphase consists of dense fullerene (C60) and magnesium metal bilayers, which are deposited successively on lithium foil by vacuum evaporation deposition and contribute to moisture resistance and lithium dendrite suppression. Thanks to this dual‐functional feature, the assembled cells with the modified anodes and commercial LiFePO4 cathodes exhibit long cycle life (>200 cycles) with high capacity retention (>98.5%). Moreover, even the modified anodes that are exposed to humid air (30% relative humidity) for over 12 h; the cells still deliver excellent performance, comparable to those without exposure. Such a unique hybrid interphase provides a new promising method for fabricating air‐stable and dendrite‐free lithium metal batteries.  相似文献   

19.
Lithium–metal fluoride batteries promise significantly higher energy density than the state‐of‐the‐art lithium‐ion batteries and lithium–sulfur batteries. Unfortunately, commercialization of metal fluoride cathodes is prevented by their high resistance, irreversible structural change, and rapid degradation. In this study, a substantial boost in metal fluoride (MF) cathode stability by designing nanostructure with two layers of protective shells—one deposited ex situ and the other in situ is demonstrated. Such methodology achieves over 90% capacity retention after 300 charge–discharge cycles, producing the first report on FeF3 as a cathode material, where a very high capacity utilization in combination with excellent stability is approaching the level needed for practical applications of FeF3. The cathode solid electrolyte interphase (CEI) containing lithium oxalate and B? F bond containing anions is found to effectively protect the cathode material from direct contact with electrolytes, thus greatly suppressing the dissolution of Fe. Quantum chemistry and molecular dynamics calculations provide unique insights into the mechanisms of CEI layer formation. As a result, this work not only demonstrates unprecedented performance, but also provides the reader with a better fundamental understanding of electrochemical behavior of MF cathodes and the positive impact observed with the application of a lithium bis(oxalato)borate salt in the electrolyte.  相似文献   

20.
Carbon materials are the most promising anodes for sodium‐ion batteries (SIBs), but low initial Coulombic efficiency (ICE) and poor cyclic stability hinder their practical use. It is shown herein, that an effective but simple remedy for these problems can be achieved by deactivating defects in the carbon with Al2O3 nanocluster coverage. A 3D porous graphene monolith (PGM) is used as the model material and Al2O3 nanoclusters around 1 nm are grown on the defects of graphene. It is shown that these Al2O3 nanoclusters suppress the decomposition of conductive sodium salt in the electrolyte, resulting in the formation of a thin and homogenous solid electrolyte interphase (SEI). In addition, Al2O3 nanoclusters appear to reduce the detrimental etching of the SEI by hydrogen fluoride (HF) and improve its stability. Therefore, after the introduction of Al2O3 nanoclusters, the ICE, cyclic stability, and rate capability of the PGM are greatly improved. A higher ICE (70.2%) and capacity retention (82.9% after 500 cycles at 0.5 A g?1) than those of normally reported for large surface area carbons are achieved. This work indicates a new way to deactivate defects and modify the SEI of carbon materials, and hopefully accelerate the commercialization of carbon materials as anode materials for SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号