首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite solar cells (PSCs) have recently demonstrated high efficiencies of over 22%, but the thermal stability is still a major challenge for commercialization. In this work, the thermal degradation process of the inverted structured PSCs induced by the silver electrode is thoroughly investigated. Elemental depth profiles indicate that iodide and methylammonium ions diffuse through the electron‐trasnporting layer and accumulate at the Ag inner surface. The driving force of forming AgI then facilitates the ions extraction. Variations on the morphology and current mapping of the MAPbI3 thin films upon thermal treatment reveal that the loss of ions occurs at the grain boundaries and leads to the reconstruction of grain domains. Consequently, the deteriorated MAPbI3 thin film, the poor electron extraction, and the generation of AgI barrier result in the degradation of efficiencies. These direct evidences provide in‐depth understanding of the effect of thermal stress on the devices, offering both experimental support and theoretical guidance for the improvement on the thermal stability of the inverted PSCs.  相似文献   

2.
Organic–inorganic hybrid perovskite solar cells with mixed cations and mixed halides have achieved impressive power conversion efficiency of up to 22.1%. Phase segregation due to the mixed compositions has attracted wide concerns, and their nature and origin are still unclear. Some very useful analytical techniques are controversial in microstructural and chemical analyses due to electron beam‐induced damage to the “soft” hybrid perovskite materials. In this study photoluminescence, cathodoluminescence, and transmission electron microscopy are used to study charge carrier recombination and retrieve crystallographic and compositional information for all‐inorganic CsPbIBr2 films on the nanoscale. It is found that under light and electron beam illumination, “iodide‐rich” CsPbI(1+x )Br(2?x ) phases form at grain boundaries as well as segregate as clusters inside the film. Phase segregation generates a high density of mobile ions moving along grain boundaries as ion migration “highways.” Finally, these mobile ions can pile up at the perovskite/TiO2 interface resulting in formation of larger injection barriers, hampering electron extraction and leading to strong current density–voltage hysteresis in the polycrystalline perovskite solar cells. This explains why the planar CsPbIBr2 solar cells exhibit significant hysteresis in efficiency measurements, showing an efficiency of up to 8.02% in the reverse scan and a reduced efficiency of 4.02% in the forward scan, and giving a stabilized efficiency of 6.07%.  相似文献   

3.
This paper presents a systematic study of the influence of electron‐transport materials on the operation stability of the inverted perovskite solar cells under both laboratory indoor and the natural outdoor conditions in the Negev desert. It is shown that all devices incorporating a Phenyl C61 Butyric Acid Methyl ester ([60]PCBM) layer undergo rapid degradation under illumination without exposure to oxygen and moisture. Time‐of‐flight secondary ion mass spectrometry depth profiling reveals that volatile products from the decomposition of methylammonium lead iodide (MAPbI3) films diffuse through the [60]PCBM layer, go all the way toward the top metal electrode, and induce its severe corrosion with the formation of an interfacial AgI layer. On the contrary, alternative electron‐transport material based on the perylendiimide derivative provides good isolation for the MAPbI3 films preventing their decomposition and resulting in significantly improved device operation stability. The obtained results strongly suggest that the current approach to design inverted perovskite solar cells should evolve with respect to the replacement of the commonly used fullerene‐based electron‐transport layers with other types of materials (e.g., functionalized perylene diimides). It is believed that these findings pave a way toward substantial improvements in the stability of the perovskite solar cells, which are essential for successful commercialization of this photovoltaic technology.  相似文献   

4.
Straightforward evidence for ion‐diffusion‐induced interfacial degradation in inverted perovskite solar cells is presented. Over 1000 h, solar cells inevitably undergo degradation, especially with respect to the current density and fill factor. The Ag electrode is peeled off and re‐evaporated to investigate the effect of the Ag/[6,6]‐phenyl C71 butyric acid methyl ester (PCBM) interfacial degradation on the photovoltaic performance at days 10 (240 h), 20 (480 h), 30 (720 h), and 40 (960 h). The power conversion efficiency increases after the Ag electrode restoration process. While the current density shows a slightly decreased value, the fill factor and open‐circuit voltage increase for the new electrode devices. The decrease in the activation energy due to the restored Ag electrode induces recovery of the fill factor. The diffused I? ions react with the PCBM molecules, resulting in a quasi n‐doping effect of PCBM. Upon electrode exchange, the reversible interaction between the iodine ions and PCBM causes current density variation. The disorder model for the open‐circuit voltage over a wide range of temperatures explains the open‐circuit voltage increase at every electrode exchange. Finally, the degradation mechanism of the inverted perovskite solar cell over 1000 h is described under the proposed recombination system.  相似文献   

5.
Next‐generation organic solar cells such as dye‐sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are studied at the National Institute of Advanced Industrial Science and Technology (AIST), and their materials, electronic properties, and fabrication processes are investigated. To enhance the performance of DSSCs, the basic structure of an electron donor, π‐electron linker, and electron acceptor, i.e., D–π–A, is suggested. In addition, special organic dyes containing coumarin, carbazole, and triphenylamine electron donor groups are synthesized to find an effective dye structure that avoids charge recombination at electrode surfaces. Meanwhile, PSCs are manufactured using both a coating method and a laser deposition technique. The results of interfacial studies demonstrate that the level of the conduction band edge (CBE) of a compact TiO2 layer is shifted after TiCl4 treatment, which strongly affects the solar cell performance. Furthermore, a special laser deposition system is developed for the fabrication of the perovskite layers of PSCs, which facilitates the control over the deposition rate of methyl ammonium iodide used as their precursor.  相似文献   

6.
2D Ruddlesden–Popper perovskites (RPPs) have recently drawn significant attention because of their structural variability that can be used to tailor optoelectronic properties and improve the stability of derived photovoltaic devices. However, charge separation and transport in 2D perovskite solar cells (PSCs) suffer from quantum well barriers formed during the processing of perovskites. It is extremely difficult to manage phase distributions in 2D perovskites made from the stoichiometric mixtures of precursor solutions. Herein, a generally applicable guideline is demonstrated for precisely controlling phase purity and arrangement in RPP films. By visually presenting the critical colloidal formation of the single‐crystal precursor solution, coordination engineering is conducted with a rationally selected cosolvent to tune the colloidal properties. In nonpolar cosolvent media, the derived colloidal template enables RPP crystals to preferentially grow along the vertically ordered alignment with a narrow phase variation around a target value, resulting in efficient charge transport and extraction. As a result, a record‐high power conversion efficiency (PCE) of 14.68% is demonstrated for a (TEA)2(MA)2Pb3I10 (n = 3) photovoltaic device with negligible hysteresis. Remarkably, superior stability is achieved with 93% retainment of the initial efficiency after 500 h of unencapsulated operation in ambient air conditions.  相似文献   

7.
8.
Gallium arsenide (GaAs) photovoltaic (PV) cells have been widely investigated due to their merits such as thin‐film feasibility, flexibility, and high efficiency. To further increase their performance, a wider bandgap PV structure such as indium gallium phosphide (InGaP) has been integrated in two‐terminal (2T) tandem configuration. However, it increases the overall fabrication cost, complicated tunnel‐junction diode connecting subcells are inevitable, and materials are limited by lattice matching. Here, high‐efficiency and stable wide‐bandgap perovskite PVs having comparable bandgap to InGaP (1.8–1.9 eV) are developed, which can be stable low‐cost add‐on layers to further enhance the performance of GaAs PVs as tandem configurations by showing an efficiency improvement from 21.68% to 24.27% (2T configuration) and 25.19% (4T configuration). This approach is also feasible for thin‐film GaAs PV, essential to reduce its fabrication cost for commercialization, with performance increasing from 21.85% to 24.32% and superior flexibility (1000 times bending) in a tandem configuration. Additionally, potential routes to over 30% stable perovskite/GaAs tandems, comparable to InGaP/GaAs with lower cost, are considered. This work can be an initial step to reach the objective of improving the usability of GaAs PV technology with enhanced performance for applications for which lightness and flexibility are crucial, without a significant additional cost increase.  相似文献   

9.
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.  相似文献   

10.
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.  相似文献   

11.
Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide‐bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo‐generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.  相似文献   

12.
Metal halide perovskite solar cells (PSCs) have emerged as promising candidates for photovoltaic technology with their power conversion efficiencies over 23%. For prototypical organic–inorganic metal halide perovskites, their intrinsic instability poses significant challenges to the commercialization of PSCs. Recently, the scientific community has done tremendous work in composition engineering to develop more robust light‐absorbing layers, including mixed‐ion hybrid perovskites, low‐dimensional hybrid perovskites, and all‐inorganic perovskites. This review provides an overview of the impact of these perovskites on the efficiency and long‐term stability of PSCs.  相似文献   

13.
14.
Perovskite solar cells (PSCs) have attracted much attention as efficiencies have gone beyond 24%. To achieve these impressive numbers, the PSC scientific community is working to improve the perovskite optoelectronic properties. Imaging and mapping characterization techniques have been widely used to understand the fundamental properties that allow lead halide perovskites to achieve high performance. In this review, these techniques are evaluated, from simple tools, such as electron microscopy, to more complex systems that include atomic force microscopy, synchrotron‐based X‐ray mapping, and ultrafast and photoluminescence mapping. These tools have helped understand lead halide perovskites and their impressive optoelectronic properties, which make them outstanding materials for solar cell applications.  相似文献   

15.
The recent rapid increase in efficiency of organic–inorganic perovskite solar cells (PSCs) has resulted in a need to develop a clear understanding of their stability and working mechanisms. In particular, it has been suggested that ion migration contributes to the commonly observed hysteresis in the current–voltage measurements of PSCs, but the rate of ion migration and its effects on the electronic properties of PSCs remain to be addressed. In this work, electron‐beam‐induced current (EBIC) is used to directly map changes in local current extraction in organic–inorganic PSCs under applied voltage. By combining EBIC mapping, standard current–voltage measurements, and external quantum efficiency measurements, it is shown that between the two potential roles that point defects play in device enhancement under voltage biasing, the effects caused by defect‐mediated ion migration outweigh the effects from the filling of trap states caused by these defects. Evidence is also provided for ion migration preferentially at local features such as extended defects. The measured timescale of tens of seconds for migration across a full device imply that ion migration contributes indirectly to the electronic capacitance of perovskite devices through interface charging.  相似文献   

16.
The mixed perovskite (FAPbI3)1?x (MAPbBr3)x , prepared by directly mixing different perovskite components, suffers from phase competition and a low‐crystallinity character, resulting in instability, despite the high efficiency. In this study, a dual ion exchange (DIE) method is developed by treating as‐prepared FAPbI3 with methylammonium brodide (MABr)/tert‐butanol solution. The converted perovskite thin film shows an optimized absorption edge at 800 nm after reaction time control, and the high crystallinity can be preserved after MABr incorporation. More importantly, it is found that the threshold electrical field to initiate ion migration is greatly increased in DIE perovskite thin film because excess MABr on the surface can effectively heal structural defects located on grain boundaries during the ion exchange process. It contributes to the over‐one‐month moisture stability under ≈65% room humidity (RH) and greatly enhanced light stability for the bare perovskite film. As a result of preserved high crystallinity and simultaneous grain boundary passivation, the perovskite solar cells fabricated by the DIE method demonstrate reliable reproducibility with an average power conversion efficiency (PCE) of 17% and a maximum PCE of 18.1%, with negligible hysteresis.  相似文献   

17.
The main handicap still hindering the eventual exploitation of organometal halide perovskite‐based solar cells is their poor stability under prolonged illumination, ambient conditions, and increased temperatures. This article shows for the first time the vacuum processing of the most widely used solid‐state hole conductor (SSHC), i.e., the Spiro‐OMeTAD [2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenyl‐amine) 9,9′‐spirobifluorene], and how its dopant‐free crystalline formation unprecedently improves perovskite solar cell (PSC) stability under continuous illumination by about two orders of magnitude with respect to the solution‐processed reference and after annealing in air up to 200 °C. It is demonstrated that the control over the temperature of the samples during the vacuum deposition enhances the crystallinity of the SSHC, obtaining a preferential orientation along the π–π stacking direction. These results may represent a milestone toward the full vacuum processing of hybrid organic halide PSCs as well as light‐emitting diodes, with promising impacts on the development of durable devices. The microstructure, purity, and crystallinity of the vacuum sublimated Spiro‐OMeTAD layers are fully elucidated by applying an unparalleled set of complementary characterization techniques, including scanning electron microscopy, X‐ray diffraction, grazing‐incidence small‐angle X‐ray scattering and grazing‐incidence wide‐angle X‐ray scattering, X‐ray photoelectron spectroscopy, and Rutherford backscattering spectroscopy.  相似文献   

18.
Stability is one of the key challenges for industrial scale commercialization of perovskite solar cells. In this work, a degradation mechanism that depends on materials and bias conditions of the device during light‐soaking is proposed. The observed degradation is linked to the additive 4‐tert‐butyl pyridine (tBP), crucial to the hole transport layer of most perovskite solar cells, and gold. This conclusion is reached through the statistical analysis of multiple compositional profiles of light‐soaked and nonlight‐soaked devices and by selective replacement of material layers of the device. Moreover, the rate of the light‐induced degradation is enhanced by operation at forward bias, which is required for power generation. Thus, this work stresses the need for the development of transport layers that do not require tBP, and to replace gold to produce high‐performing devices that are also stable under operating conditions.  相似文献   

19.
Organic‐inorganic halide perovskite materials have become a shining star in the photovoltaic field due to their unique properties, such as high absorption coefficient, optimal bandgap, and high defect tolerance, which also lead to the breathtaking increase in power conversion efficiency from 3.8% to over 22% in just seven years. Although the highest efficiency was obtained from the TiO2 mesoporous structure, there are increasing studies focusing on the planar structure device due to its processibility for large‐scale production. In particular, the planar p‐i‐n structure has attracted increasing attention on account of its tremendous advantages in, among other things, eliminating hysteresis alongside a competitive certified efficiency of over 20%. Crucial for the device performance enhancement has been the interface engineering for the past few years, especially for such planar p‐i‐n devices. The interface engineering aims to optimize device properties, such as charge transfer, defect passivation, band alignment, etc. Herein, recent progress on the interface engineering of planar p‐i‐n structure devices is reviewed. This review is mainly focused on the interface design between each layer in p‐i‐n structure devices, as well as grain boundaries, which are the interfaces between polycrystalline perovskite domains. Promising research directions are also suggested for further improvements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号