首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

2.
Morphology is a critical factor to determine the photovoltaic performance of organic solar cells (OSCs). However, delicately fine‐tuning the morphology involving only small molecules is an extremely challenging task. Herein, a simple, generic, and effective concentration‐induced morphology manipulation approach is demonstrated to prompt both the state‐of‐the‐art thin‐film BTR‐Cl:Y6 and thick‐film BTR:PC71BM all‐small‐molecule (ASM) OSCs to a record level. The morphology is delicately controlled by subtly altering the prepared solution concentration but maintaining the identical active layer thickness. The remarkable performance enhancement achieved by this approach mainly results from the enhanced absorption, reduced trap‐assistant recombination, increased crystallinity, and optimized phase‐separated network. These findings demonstrate that a concentration‐induced morphology manipulation strategy can further propel the reported best‐performing ASM OSCs to a brand‐new level, and provide a promising way to delicately control the morphology towards high‐performance ASM OSCs.  相似文献   

3.
Symmetry breaking provides a new material design strategy for nonfullerene small molecule acceptors (SMAs). The past 10 years have witnessed significant advances in asymmetric nonfullerene SMAs in organic solar cells (OSCs) with power conversion efficiency (PCE) increasing from ≈1% to ≈14%. In this review, the progress of asymmetric nonfullerene SMAs, including early reports of asymmetric nonfullerene SMAs, asymmetric PDI‐based nonfullerene SMAs, and asymmetric acceptor–donor–acceptor (A–D–A)‐type nonfullerene SMAs, is summarized. The structure–property relationships and the perspectives for future development of asymmetric nonfullerene SMAs are also discussed.  相似文献   

4.
Three acceptor–donor–acceptor type nonfullerene acceptors (NFAs), namely, F–F, F–Cl, and F–Br, are designed and synthesized through a halogenation strategy on one successful nonfullerene acceptor FDICTF (F–H). The three molecules show red‐shifted absorptions, increased crystallinities, and higher charge mobilities compared with the F–H. After blending with donor polymer PBDB‐T, the F–F‐, F–Cl‐, and F–Br‐based devices exhibit power conversion efficiencies (PCEs) of 10.85%, 11.47%, and 12.05%, respectively, which are higher than that of F–H with PCE of 9.59%. These results indicate that manipulating the absorption range, crystallinity and mobilities of NFAs by introducing different halogen atoms is an effective way to achieve high photovoltaic performance, which will offer valuable insight for the designing of high‐efficiency organic solar cells.  相似文献   

5.
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies.  相似文献   

6.
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

7.
Polymer/small molecule/fullerene based ternary solar cells have made great progress and have attracted considerable attention in recent years. The addition of small molecules can effectively compensate for the disadvantages of polymer solar cells, such as increasing the light‐harvesting ability, providing cascade energy levels, and tuning the morphology. Thus, polymer/small molecule/fullerene based ternary solar cells are promising candidates to obtain further improvements in photovoltaic performance for organic solar cells. This article summarizes the developments of ternary solar cells with small molecules as third components, and represents the possible photo‐physics process in the ternary blends. In addition, the challenges and perspectives for ternary solar cells are discussed.  相似文献   

8.
Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.  相似文献   

9.
The nanoscale morphology of the bulk heterojunction absorber layer in an organic solar cell (OSC) is of key importance for its efficiency. The morphology of high performance vacuum‐processed, small molecule OSCs based on oligothiophene derivatives (DCV5T‐Me) blended with C60 on various length scales is studied. The analytical electron microscopic techniques such as scanning transmission electron microscopy, energy dispersive X‐ray spectroscopy, highly sensitive external quantum efficiency measurements, and meso and nanoscale simulations are employed. Unique insights into the relation between processing, morphology, and efficiency of the final devices are obtained. It is shown that the connectivity of the oligothiophene‐C60 network is independent of the material domain size. The decisive quantity controlling the internal quantum efficiency is the energetic disorder induced by material mixing, strongly limiting charge and exciton transport in the OSCs.  相似文献   

10.
Two similar structural versions of a molecular donor, in which two terminal hexyl‐substituted bithiophene units are connected to a central dithienosilole (DTS) through electron deficient thiadiazolopyridine (PT) units, and which differ only in the position of pyridyl N‐atoms, were explored to study the interplay of crystallization and vertical phase segregation as a result of annealing. The donor materials exhibit greatly contrasting photovoltaic performance despite similarity in molecule structure. The difference in position of the pyridal N‐atom which points away (distal configuration; compound 1) or towards (proximal configuration; compound 2) from the DTS core, modifies the aggregation/molecular packing in the solid state, resulting in differences in the phase segregation and formation of crystalline domains. A systematic study of the temperature dependence of photovoltaic performance reveals a parameter trade‐off: as annealing temperature increases, higher donor crystallinity and ordering results, but increased donor segregation near the surface or decrease in electrode selectivity also occurs, resulting in increased interfacial recombination and hence reduction in open‐circuit voltage (Voc). The higher crystalline nature of 2 is found to have a higher impact on cell performance despite a competing undesired effect at the donor/aluminum cathode interface, contributing to its superior performance to 1 when blended with [6,6]phenyl‐C61‐butyric acid methyl ester (PC61BM). Molecule 2 exhibits a performance increase of a factor of two after thermal annealing at 100 °C, achieving a power conversion efficiency of 5.7%.  相似文献   

11.
As a predominant fabrication method of organic solar cells (OSCs), casting of a bulk heterojunction (BHJ) structure presents overwhelming advantages for achieving higher power conversion efficiency (PCE). However, long‐term stability and mechanical strength are significantly crucial to realize large‐area and flexible devices. Here, controlling blend film morphology is considered as an effective way toward co‐optimizing device performance, stability, and mechanical properties. A PCE of 12.27% for a P‐i‐N‐structured OSC processed by sequential blade casting (SBC) is reported. The device not only outperforms the as‐cast BHJ devices (11.01%), but also shows impressive stability and mechanical properties. The authors corroborate such enhancements with improved vertical phase separation and purer phases toward more efficient transport and collection of charges. Moreover, adaptation of SBC strategy here will result in thermodynamically favorable nanostructures toward more stable film morphology, and thus improving the stability and mechanical properties of the devices. Such co‐optimization of OSCs will pave ways toward realizing the highly efficient, large‐area, flexible devices for future endeavors.  相似文献   

12.
13.
14.
15.
16.
17.
Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices.  相似文献   

18.
19.
Crystal growth regulation has become an effective solution to reduce the defects at grain boundaries (GBs) and surfaces of perovskite films for better photovoltaic performances. Oxime acid materials are maturely used as selective collectors in the flotation separation of oxide minerals. Such materials, showing a strong coordination effect and high selectivity with lead, may have great potential in controlling the crystal growth and passivating the defect of perovskite film, which are rarely applied in perovskite solar cells (PerSCs). Herein, an oxime acid-based material with multi-coordination sites, ethyl 2-(2-aminothiazole-4-yl)-2-hydroxyiminoacetate (EHA), is incorporated into the PbI2 precursor solution to fabricate high-performance PerSCs using a two-step method. The multidentate coordination effect of EHA can link and integrate the PbI2 colloidal clusters to achieve pre-aggregation in the PbI2 precursor solution, facilitating the sequent crystal growth progress of perovskite film. Meanwhile, EHA can connect grains and fill GBs, which is favorable for charge transfer and passivating both Pb-I anti-site and iodine vacancy defects. As a result, the optimal devices show an enhanced efficiency of 24.1% and excellent humidity and thermal stability. This work affords a promising strategy to fabricate efficient and stable PerSCs via multidentate coordination-induced crystallization control and GB passivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号