首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When exposed to genotoxic stress, eukaryotic cells demonstrate a DNA damage response with delay or arrest of cell-cycle progression, providing time for DNA repair. Induction of the Epstein-Barr virus (EBV) lytic program elicited a cellular DNA damage response, with activation of the ataxia telangiectasia-mutated (ATM) signal transduction pathway. Activation of the ATM-Rad3-related (ATR) replication checkpoint pathway, in contrast, was minimal. The DNA damage sensor Mre11-Rad50-Nbs1 (MRN) complex and phosphorylated ATM were recruited and retained in viral replication compartments, recognizing newly synthesized viral DNAs as abnormal DNA structures. Phosphorylated p53 also became concentrated in replication compartments and physically interacted with viral BZLF1 protein. Despite the activation of ATM checkpoint signaling, p53-downstream signaling was blocked, with rather high S-phase CDK activity associated with progression of lytic infection. Therefore, although host cells activate ATM checkpoint signaling with response to the lytic viral DNA synthesis, the virus can skillfully evade this host checkpoint security system and actively promote an S-phase-like environment advantageous for viral lytic replication.  相似文献   

2.
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.  相似文献   

3.
Ataxia-telangiectasia-mutated and Rad3-related (ATR) plays an essential role in the maintenance of genome integrity and cell viability. The kinase is activated in response to DNA damage and initiates a checkpoint signaling cascade by phosphorylating a number of downstream substrates including Chk1. Unlike ataxia-telangiectasia-mutated (ATM), which appears to be mainly activated by DNA double-strand breaks, ATR can be activated by a variety of DNA damaging agents. However, it is still unclear what triggers ATR activation in response to such diverse DNA lesions. One model proposes that ATR can directly recognize DNA lesions, while other recent data suggest that ATR is activated by a common single-stranded DNA (ssDNA) intermediate generated during DNA repair. In this study, we show that UV lesions do not directly activate ATR in vivo. In addition, ssDNA lesions created during the repair of UV damage are also not sufficient to activate the ATR-dependent pathway. ATR activation is only observed in replicating cells indicating that replication stress is required to trigger the ATR-mediated checkpoint cascade in response to UV irradiation. Interestingly, H2AX appears to be required for the accumulation of ATR at stalled replication forks. Together our data suggest that ssDNA at arrested replication forks recruits ATR and initiates ATR-mediated phosphorylation of H2AX and Chk1. Phosphorylated H2AX might further facilitate ATR activation by stabilizing ATR at the sites of arrested replication forks.  相似文献   

4.
Genotoxins and other factors cause replication stress that activate the DNA damage response (DDR), comprising checkpoint and repair systems. The DDR suppresses cancer by promoting genome stability, and it regulates tumor resistance to chemo- and radiotherapy. Three members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, ATM, ATR, and DNA-PK, are important DDR proteins. A key PIKK target is replication protein A (RPA), which binds single-stranded DNA and functions in DNA replication, DNA repair, and checkpoint signaling. An early response to replication stress is ATR activation, which occurs when RPA accumulates on ssDNA. Activated ATR phosphorylates many targets, including the RPA32 subunit of RPA, leading to Chk1 activation and replication arrest. DNA-PK also phosphorylates RPA32 in response to replication stress, and we demonstrate that cells with DNA-PK defects, or lacking RPA32 Ser4/Ser8 targeted by DNA-PK, confer similar phenotypes, including defective replication checkpoint arrest, hyper-recombination, premature replication fork restart, failure to block late origin firing, and increased mitotic catastrophe. We present evidence that hyper-recombination in these mutants is ATM-dependent, but the other defects are ATM-independent. These results indicate that DNA-PK and ATR signaling through RPA32 plays a critical role in promoting genome stability and cell survival in response to replication stress.  相似文献   

5.
The DNA damage checkpoint prevents the onset of DNA replication and mitosis when cells are exposed to genotoxic stress. However, it is not clear how cells react to DNA damage, in particular to DNA double strand breaks (DSBs) once they are in mitosis. Using Xenopus laevis egg extract as model system we have uncovered an ATM and ATR dependent checkpoint that targets centrosome dependent spindle assembly in the presence of chromosome breaks. This pathway relies on the phosphorylation by ATM and ATR of a novel centrosomal protein CEP63. We showed that CEP63 is required for proper spindle assembly in Xenopus and chicken DT40 cells. Phosphorylation of CEP63 by ATM and ATR leads to its delocalization from centrosomes and impairs its ability to promote centrosome dependent spindle assembly. These findings further support links uncovered in other model systems between the DNA damage checkpoint and centrosome in maintaining genome stability.  相似文献   

6.
The ATM/ATR DNA damage checkpoint functions in the maintenance of genetic stability and some missense variants of the ATM gene have been shown to confer a moderate increased risk of prostate cancer. However, whether inactivation of this checkpoint contributes directly to prostate specific cancer predisposition is still unknown. Here, we show that exposure of non-malignant prostate epithelial cells (HPr-1AR) to androgen led to activation of the ATM/ATR DNA damage response and induction of cellular senescence. Notably, knockdown of the ATM gene expression in HPr-1AR cells can promote androgen-induced TMPRSS2: ERG rearrangement, a prostate-specific chromosome translocation frequently found in prostate cancer cells. Intriguingly, unlike the non-malignant prostate epithelial cells, the ATM/ATR DNA damage checkpoint appears to be defective in prostate cancer cells, since androgen treatment only induced a partial activation of the DNA damage response. This mechanism appears to preserve androgen induced autophosphorylation of ATM and phosphorylation of H2AX, lesion processing and repair pathway yet restrain ATM/CHK1/CHK2 and p53 signaling pathway. Our findings demonstrate that ATM/ATR inactivation is a crucial step in promoting androgen-induced genomic instability and prostate carcinogenesis.  相似文献   

7.
ATM and ATR are key components of the DNA damage checkpoint. ATR primarily responds to UV damage and replication stress, yet may also function with ATM in the checkpoint response to DNA double-strand breaks (DSBs), although this is less clear. Here, we show that atl-1 (Caenorhabditis elegans ATR) and rad-5/clk-2 prevent mitotic catastrophe, function in the S-phase checkpoint and also cooperate with atm-1 in the checkpoint response to DSBs after ionizing radiation (IR) to induce cell cycle arrest or apoptosis via the cep-1(p53)/egl-1 pathway. ATL-1 is recruited to stalled replication forks by RPA-1 and functions upstream of rad-5/clk-2 in the S-phase checkpoint. In contrast, mre-11 and atm-1 are dispensable for ATL-1 recruitment to stalled replication forks. However, mre-11 is required for RPA-1 association and ATL-1 recruitment to DSBs. Thus, DNA processing controlled by mre-11 is important for ATL-1 activation at DSBs but not following replication fork stalling. We propose that atl-1 and rad-5/clk-2 respond to single-stranded DNA generated by replication stress and function with atm-1 following DSB resection.  相似文献   

8.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.  相似文献   

9.
10.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

11.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

12.
The DNA damage surveillance network orchestrates cellular responses to DNA damage through the recruitment of DNA damage-signaling molecules to DNA damage sites and the concomitant activation of protein phosphorylation cascades controlled by the ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) kinases. Activation of ATM/ATR triggers cell cycle checkpoint activation and adaptive responses to DNA damage. Recent studies suggest that protein ubiquitylation or degradation plays an important role in the DNA damage response. In this study, we examined the potential role of the proteasome in checkpoint activation and ATM/ATR signaling in response to UV light-induced DNA damage. HeLa cells treated with the proteasome inhibitor MG-132 showed delayed phosphorylation of ATM substrates in response to UV light. UV light-induced phosphorylation of 53BP1, as well as its recruitment to DNA damage foci, was strongly suppressed by proteasome inhibition, whereas the recruitment of upstream regulators of 53BP1, including MDC1 and H2AX, was unaffected. The ubiquitin-protein isopeptide ligase RNF8 was critical for 53BP1 focus targeting and phosphorylation in ionizing radiation-damaged cells, whereas UV light-induced 53BP1 phosphorylation and targeting exhibited partial dependence on RNF8 and the ubiquitin-conjugating enzyme UBC13. Suppression of RNF8 or UBC13 also led to subtle defects in UV light-induced G2/M checkpoint activation. These findings are consistent with a model in which RNF8 ubiquitylation pathways are essential for 53BP1 regulation in response to ionizing radiation, whereas RNF8-independent pathways contribute to 53BP1 targeting and phosphorylation in response to UV light and potentially other forms of DNA replication stress.  相似文献   

13.
Mutation of DNA damage checkpoint signaling kinases ataxia telangiectasia-mutated (ATM) or ATM- and Rad3-related (ATR) results in genomic instability disorders. However, it is not well understood how the instability observed in these syndromes relates to DNA replication/repair defects and failed checkpoint control of cell cycling. As a simple model to address this question, we have studied SV40 chromatin replication in infected cells in the presence of inhibitors of ATM and ATR activities. Two-dimensional gel electrophoresis and southern blotting of SV40 chromatin replication products reveal that ATM activity prevents accumulation of unidirectional replication products, implying that ATM promotes repair of replication-associated double strand breaks. ATR activity alleviates breakage of a functional fork as it converges with a stalled fork. The results suggest that during SV40 chromatin replication, endogenous replication stress activates ATM and ATR signaling, orchestrating the assembly of genome maintenance machinery on viral replication intermediates.  相似文献   

14.
DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.  相似文献   

15.
16.
17.
Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.  相似文献   

18.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   

19.
The Fanconi anemia (FA) pathway is a DNA damage-activated signaling pathway which regulates cellular resistance to DNA cross-linking agents. Cloned FA genes and proteins cooperate in this pathway, and monoubiquitination of FANCD2 is a critical downstream event. The cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of FANCD2, while another checkpoint kinase, ATM, directly phosphorylates FANCD2 and controls the ionizing radiation (IR)-inducible intra-S-phase checkpoint. In the present study, we identify two novel DNA damage-inducible phosphorylation sites on FANCD2, threonine 691 and serine 717. ATR phosphorylates FANCD2 on these two sites, thereby promoting FANCD2 monoubiquitination and enhancing cellular resistance to DNA cross-linking agents. Phosphorylation of the sites is required for establishment of the intra-S-phase checkpoint response. IR-inducible phosphorylation of threonine 691 and serine 717 is also dependent on ATM and is more strongly impaired when both ATM and ATR are knocked down. Threonine 691 is phosphorylated during normal S-phase progression in an ATM-dependent manner. These findings further support the functional connection of ATM/ATR kinases and FANCD2 in the DNA damage response and support a role for the FA pathway in the coordination of the S phase of the cell cycle.  相似文献   

20.
Human DNA mismatch repair (MMR) is involved in the removal of DNA base mismatches that arise either during DNA replication or are caused by DNA damage. In this study, we show that the activation of the MMR component hMLH1 in response to doxorubicin (DOX) treatment requires the presence of BRCA1 and that this phenomenon is mediated by an ATM/ATR dependent phosphorylation of the hMLH1 Ser-406 residue. BRCA1 is an oncosuppressor protein with a central role in the DNA damage response and it is a critical component of the ATM/ATR mediated checkpoint signaling. Starting from a previous finding in which we demonstrated that hMLH1 is able to bind to BRCA1, in this study we asked whether BRCA1 might be the bridge for ATM/ATR dependent phosphorylation of the hMLH1 molecular partner. We found that: (i) the negative modulation of BRCA1 expression is able to produce a remarkable reversal of hMLH1 stabilization, (ii) BRCA1 is required for post-translational modification produced by DOX treatment on hMLH1 which is, in turn, attributed to the ATM/ATR activity, (iii) the serine 406 phosphorylatable residue is critical for hMLH1 activation by ATM/ATR via BRCA1. Taken together, our data lend support to the hypothesis suggesting an important role of this oncosuppressor as a scaffold or bridging protein in DNA-damage response signaling via downstream phosphorylation of the ATM/ATR substrate hMLH1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号