首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

2.
As an emerging electrochemical energy storage device, potassium‐ion batteries (PIBs) have drawn growing interest due to the resource‐abundance and low cost of potassium. Graphite‐based materials, as the most common anodes for commercial Li‐ion batteries, have a very low capacity when used an anode for Na‐ion batteries, but they show reasonable capacities as anodes for PIBs. The practical application of graphitic materials in PIBs suffers from poor cyclability, however, due to the large interlayer expansion/shrinkage caused by the intercalation/deintercalation of potassium ions. Here, a highly graphitic carbon nanocage (CNC) is reported as a PIBs anode, which exhibits excellent cyclability and superior depotassiation capacity of 175 mAh g?1 at 35 C. The potassium storage mechanism in CNC is revealed by cyclic voltammetry as due to redox reactions (intercalation/deintercalation) and double‐layer capacitance (surface adsorption/desorption). The present results give new insights into structural design for graphitic anode materials in PIBs and understanding the double‐layer capacitance effect in alkali metal ion batteries.  相似文献   

3.
Rechargeable aqueous zinc‐ion batteries (ZIBs) are appealing due to their high safety, zinc abundance, and low cost. However, developing suitable cathode materials remains a great challenge. Herein, a novel 2D heterostructure of ultrathin amorphous vanadium pentoxide uniformly grown on graphene (A‐V2O5/G) with a very short ion diffusion pathway, abundant active sites, high electrical conductivity, and exceptional structural stability, is demonstrated for highly reversible aqueous ZIBs (A‐V2O5/G‐ZIBs), coupling with unprecedented high capacity, rate capability, long‐term cyclability, and excellent safety. As a result, 2D A‐V2O5/G heterostructures for stacked ZIBs at 0.1 A g?1 display an ultrahigh capacity of 489 mAh g?1, outperforming all reported ZIBs, with an admirable rate capability of 123 mAh g?1 even at 70 A g?1. Furthermore, the new‐concept prototype planar miniaturized zinc‐ion microbatteries (A‐V2O5/G‐ZIMBs), demonstrate a high volumetric capacity of 20 mAh cm?3 at 1 mA cm?2, long cyclability; holding high capacity retention of 80% after 3500 cycles, and in‐series integration, demonstrative of great potential for highly‐safe microsized power sources. Therefore, the exploration of such 2D heterostructure materials with strong synergy is a reliable strategy for developing safe and high‐performance energy storage devices.  相似文献   

4.
The strategy of inducing interlayer anionic ligands in 2D MoS1.5Se0.5 nanosheets is employed to consolidate the interlayer band gap and optimize the electronic structure for the potassium ion battery. It combines complementary advantages from two kinds of anionic ligands with high conductivity and good affinity with potassium ions. The potassium ion diffusion rate is accelerated as well by an optimized lower energy barrier for ion diffusion pathways, with the formation of highly reversible KMo3Se3 crystal other than K0.4MoS2/K2MoS4, which encounters a much slower electro/ion diffusion rate upon discharging. These advances deliver enhanced potassium storage properties with excellent cycling stability, with retained specific capacity of 531.6 mAh g?1 at a current density of 200 mA g?1 even after 1000 cycles, and high rate capability with specific capacity of 270.1 mAh g?1 at 5 A g?1. The insertion and conversion mechanism are also elucidated by a combination of density functional theory computations and in situ synchrotron measurements.  相似文献   

5.
Soft carbon has attracted tremendous attention as an anode in rocking‐chair batteries owing to its exceptional properties including low‐cost, tunable interlayer distance, and favorable electronic conductivity. However, it fails to exhibit decent performance for sodium‐ion storage owing to difficulties in the formation of sodium intercalation compounds. Here, microporous soft carbon nanosheets are developed via a microwave induced exfoliation strategy from a conventional soft carbon compound obtained by pyrolysis of 3,4,9,10‐perylene tetracarboxylic dianhydride. The micropores and defects at the edges synergistically leads to enhanced kinetics and extra sodium‐ion storage sites, which contribute to the capacity increase from 134 to 232 mAh g?1 and a superior rate capability of 103 mAh g?1 at 1000 mA g?1 for sodium‐ion storage. In addition, the capacitance‐dominated sodium‐ion storage mechanism is identified through the kinetics analysis. The in situ X‐ray diffraction analyses are used to reveal that sodium ions intercalate into graphitic layers for the first time. Furthermore, the as‐prepared nanosheets can also function as an outstanding anode for potassium‐ion storage (reversible capacity of 291 mAh g?1) and dual‐ion full cell (cell‐level capacity of 61 mAh g?1 and average working voltage of 4.2 V). These properties represent the potential of soft carbon for achieving high‐energy, high‐rate, and low‐cost energy storage systems.  相似文献   

6.
Alloying electrodes are regarded as promising anodes for lithium/sodium storage thanks to their multielectron reaction capacity, moderate voltage plateau, and high electrical conductivity. However, huge volume change upon cycling, especially for sodium storage, usually causes the loss of electrical connection between active components and their delaminations from traditional current collectors, thus leading to rapid capacity decay. Herein, a unique 3D current collector is assembled from 1D nanowire arrays anchored on 3D porous Cu foams for constructing core‐shelled Cu@Sb nanowires as advanced sodium‐ion battery (SIB) anodes. The so‐formed hierarchical 3D anode with interconnected 3D micrometer sized pores and abundant voids between nanowires not only effectively accommodates the structural strains during repeated cycling but also ensures the structural integrity and contributes to a uniform ion/electron scattered distribution throughout the whole surface. When employed as anodes for SIBs, the obtained electrode shows a high capacity of 605.3 mAh g?1 at 330 mA g?1, and demonstrates a high capacity retention of 84.8% even at a high current density of 3300 mA g?1. The 3D nanowire arrayed Cu current collector in this work can offer a promising strategy for designing and building advanced alloy anodes for lithium/sodium storage.  相似文献   

7.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

8.
A unique nanostructure of 3D and vertically aligned and interconnected porous carbon nanosheets (3D‐VCNs) is demonstrated by a simple carbonization of agar. The key feature of 3D‐VCNs is that they possess numerous 3D channels with macrovoids and mesopores, leading to high surface area of 1750 m2 g?1, which play an important role in loading large amount of sulfur, while vertically aligned microporous carbon nanosheets act as the multilayered physical barrier against polysulfides anions and prevent their dissolution in the electrolyte due to strong adsorption during cycling process. As a result, the 3D hybrid (3D‐S‐VCNs) infiltered with 68.3 wt% sulfur exhibits a high and stable reversible capacity of 844 mAh g?1 at the current density of 837 mA g?1 with excellent Coulombic efficiency ≈100%, capacity retention of ≈80.3% over 300 cycles, and good rate ability (the reversible capacity of 738 mAh g?1 at the high current density of 3340 mA g?1). The present work highlights the vital role of the introduction of 3D carbon nanosheets with macrovoids and mesopores in enhancing the performance of LSBs.  相似文献   

9.
Potassium‐based energy storage devices (PESDs) are promising candidates for large‐scale energy storage applications owing to potassiums abundant in nature, the low standard redox potential (?2.93 V for K/K+ vs the standard hydrogen electrode) of potassium (K), and high ionic conductivity of K‐ion based electrolytes. However, lack of proper cathode and anode materials hinder practical applications of PESDs. In this work, carbon nanosheets doped with an ultrahigh content of nitrogen (22.7 at%) are successfully synthesized as an anode material for a K‐ion battery, which delivers a high capacity of 410 mAh g?1 at a current density of 500 mA g?1, which is the best result among the carbon based anodes for PESDs. Moreover, the battery exhibits an excellent cycling performance with a capacity retention of 70% after 3000 cycles at a high current density of 5 A g?1. In situ Raman, galvanostatic intermittent titration, and density functional theory calculations reveal that the ultrahigh N‐doped carbon nanosheet (UNCN) simultaneously combines the diffusion and pseudocapacitive mechanisms together, which remarkably improves its electrochemical performances in K‐ion storage. These results demonstrate the good potential of UNCNs as a high‐performance anode for PESDs.  相似文献   

10.
Tuning heterointerfaces between hybrid phases is a very promising strategy for designing advanced energy storage materials. Herein, a low‐cost, high‐yield, and scalable two‐step approach is reported to prepare a new type of hybrid material containing MoS2/graphene nanosheets prepared from ball‐milling and exfoliation of commercial bulky MoS2 and graphite. When tested as an anode material for a sodium‐ion battery, the as‐prepared MoS2/graphene nanosheets exhibit remarkably high rate capability (284 mA h g?1 at 20 A g?1 (≈30C) and 201 mA h g?1 at 50 A g?1 (≈75C)) and excellent cycling stability (capacity retention of 95% after 250 cycles at 0.3 A g?1). Detailed experimental measurements and density functional theory calculation reveal that the functional groups in 2D MoS2/graphene heterostructures can be well tuned. The impressive rate capacity of the as‐prepared MoS2/graphene hybrids should be attributed to the heterostructures with a low degree of defects and residual oxygen containing groups in graphene, which subsequently improve the electronic conductivity of graphene and decrease the Na+ diffusion barrier at the MoS2/graphene interfaces in comparison with the acid treated one.  相似文献   

11.
Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g?1 at 0.1 A g?1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g?1 at a current density of 10 A g?1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications.  相似文献   

12.
Different from previously reported mechanical alloying route to synthesize Sn x P3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low‐temperature solution‐based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high‐rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g?1 at a current density of 100 mA g?1 over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g?1 even at a high current density of 2.0 A g?1. Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g?1 after 1500 cycles at a high current density of 1.0 A g?1. The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.  相似文献   

13.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

14.
Li‐rich oxide is a promising candidate for the cathodes of next‐generation lithium‐ion batteries. However, its utilization is restricted by cycling instability and inferior rate capability. To tackle these issues, three‐dimensional (3D), hierarchical, cube‐maze‐like Li‐rich cathodes assembled from two‐dimensional (2D), thin nanosheets with exposed {010} active planes, are developed by a facile hydrothermal approach. Benefiting from their unique architecture, 3D cube‐maze‐like cathodes demonstrate a superior reversible capacity (285.3 mAh g?1 at 0.1 C, 133.4 mAh g?1 at 20.0 C) and a great cycle stability (capacity retention of 87.4% after 400 cycles at 2.0 C, 85.2% after 600 cycles and 75.0% after 1200 cycles at 20.0 C). When this material is matched with a graphite anode, the full cell achieves a remarkable discharge capacity (275.2 mAh g?1 at 0.1 C) and stable cycling behavior (capacity retention of 88.7% after 100 cycles at 5.0 C, capacity retention of 84.8% after 100 cycles at 20.0 C). The present work proposes an accessible way to construct 3D hierarchical architecture assembled from 2D nanosheets with exposed high‐energy active {010} planes and verifies its validity for advanced Li‐rich cathodes.  相似文献   

15.
A three‐dimensional porous core‐shell Sn@carbon anode on nickel foam substrate was fabricated by electrostatic spray deposition (ESD) technique followed by high temperature treatment. The carbon shell with a thickness of about 3.2 nm was formed on porous Sn structure at high temperature. 3D porous structure and carbon shell were designed to buffer volume expansion/shrinkage of Sn lattice upon cycling and increase the electrical conductivity. After 315 charge/discharge cycles Sn@carbon anode exhibited high specific capacity of 638 mAh g?1 with the low capacity fade of average 0.11 mAh g?1 per cycle. Sn@carbon based anodes was demonstrated to have promising potential for high performance lithium ion batteries application.  相似文献   

16.
With high theoretical energy density, rechargeable metal–gas batteries (e.g., Li–CO2 battery) are considered as one of the most promising energy storage devices. However, their practical applications are hindered by the sluggish reaction kinetics and discharge product accumulation during battery cycling. Currently, the solutions focus on exploration of new catalysts while the thorough understanding of their underlying mechanisms is often ignored. Herein, the interfacial electronic interaction within rationally designed catalysts, ZnS quantum dots/nitrogen‐doped reduced graphene oxide (ZnS QDs/N‐rGO) heterostructures, and their effects on transformation and deposition of discharge products in the Li–CO2 battery are revealed. In this work, the interfacial interaction can both enhance the catalytic activities of ZnS QDs/N‐rGO heterostructures and induce the nucleation of discharge products to form a homogeneous Li2CO3/C film with excellent electronic transmission and high electrochemical activities. When the batteries cycle within a cutoff specific capacity of 1000 mAh g?1 at a current density of 400 mA g?1, the cycling performance of the Li–CO2 battery using a ZnS QDs/N‐rGO cathode is over 3 and 9 times than those coupled with a ZnS nanosheets (NST)/N‐rGO cathode and a N‐rGO cathode, respectively. This work provides comprehensive understandings on designing catalysts for Li–CO2 batteries as well as other rechargeable metal–gas batteries.  相似文献   

17.
ReS2 (rhenium disulfide) is a new transition‐metal dichalcogenide that exhibits 1T′ phase and extremely weak interlayer van der Waals interactions. This makes it promising as an anode material for sodium‐ion batteries. However, achieving both a high‐rate capability and a long‐life has remained a major research challenge. Here, a new composite is reported, in which both are realized for the first time. 1T′‐ReS2 is confined through strong interfacial interaction in a 2D‐honeycombed carbon nanosheets that comprise an rGO inter‐layer and a N‐doped carbon coating‐layer (rGO@ReS2@N‐C). The strong interfacial interaction between carbon and ReS2 increases overall conductivity and decreases Na+ diffusion resistance, whilst the intended 2D‐honeycombed carbon protective layer maintains structural morphology and electrochemical activity during long‐term cycling. These findings are confirmed by advanced characterization techniques, electrochemical measurement, and density functional theory calculation. The new rGO@ReS2@N‐C exhibits the greatest rate performance reported so far for ReS2 of 231 mAh g?1 at 10 A g?1. Significantly, this is together with ultra‐stable long‐term cycling of 192 mAh g?1 at 2 A g?1 after 4000 cycles.  相似文献   

18.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

19.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

20.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号