共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood from short rotation coppices (SRCs) is discussed as bioenergy feedstock with good climate mitigation potential inter alia because soil organic carbon (SOC) might be sequestered by a land-use change (LUC) from cropland to SRC. To test if SOC is generally enhanced by SRC over the long term, we selected the oldest Central European SRC plantations for this study. Following the paired plot approach soils of the 21 SRCs were sampled to 80 cm depth and SOC stocks, C/N ratios, pH and bulk densities were compared to those of adjacent croplands or grasslands. There was no general trend to SOC stock change by SRC establishment on cropland or grassland, but differences were very site specific. The depth distribution of SOC did change. Compared to cropland soils, the SOC density in 0–10 cm was significantly higher under SRC (17 ± 2 in cropland and 21 ± 2 kg C m−3 in SRC). Under SRC established on grassland SOC density in 0–10 cm was significantly lower than under grassland. The change rates of total SOC stocks by LUC from cropland to SRC ranged from −1.3 to 1.4 Mg C ha−1 yr−1 and −0.6 Mg C ha−1 yr−1 to +0.1 Mg C ha−1 yr−1 for LUC from grassland to SRC, respectively. The accumulation of organic carbon in the litter layer was low (0.14 ± 0.08 Mg C ha−1 yr−1). SOC stocks of both cropland and SRC soils were correlated with the clay content. No correlation could be detected between SOC stock change and soil texture or other abiotic factors. In summary, we found no evidence of any general SOC stock change when cropland is converted to SRC and the identification of the factors determining whether carbon may be sequestered under SRC remains a major challenge. 相似文献
2.
Rebecca L. Rowe Aidan M. Keith Dafydd Elias Marta Dondini Pete Smith Jonathan Oxley Niall P. McNamara 《Global Change Biology Bioenergy》2016,8(6):1046-1060
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks. 相似文献
3.
Susan E. Crow Jon M. Wells Carlos A. Sierra Adel H. Youkhana Richard M. Ogoshi Daniel Richardson Christine Tallamy Glazer Manyowa N. Meki James R. Kiniry 《Global Change Biology Bioenergy》2020,12(10):806-817
As part of an integrated energy and climate system, biomass production for bioenergy based on the tropical perennial C4 grass energycane can both offset fossil fuels and store soil carbon (C). We measured energycane yields, root biomass, soil C pools, and soil C stocks in a 4 year field trial and modeled C flow from plants to soils in the surface layer of no‐till energycane planted after more than a century of intensive sugarcane agriculture. Aboveground yields ranged from 16.7 to 19.0 Mg C/ha over the 4 year trial. Although total C stocks did not significantly differ in the surface layer (approx. 0–20 cm) during the study, C in free and occluded light fractions decreased, whereas C in the mineral‐rich dense fraction increased over 4 years. Belowground system inputs, estimated from measurements and informed by convergence in the final soil fraction model, were set to 2.5 Mg C ha?1 year?1. With this input value, we estimated that surface soils retained photosynthetically fixed C predominantly within the mineral‐associated organic matter pool for a mean and median transit time of 177 and 110 years, respectively. Although we did not model C flow to deep soil layers (approx. 0–100 cm), observed C accumulation (11.4 Mg C ha?1 year?1) and root growth down to 120 cm suggest that soil processes and resulting C sequestration at the surface are likely to persist deeper into the soil profile. Energycane, as a strong candidate for climate change mitigation and land degradation remediation, showed high biomass yields and allocation of resources to roots, with sequestered soil C expected to persist for over a century. 相似文献
4.
TERENZIO ZENONE JIQUAN CHEN MICHAEL W. DEAL BURKHARD WILSKE POONAM JASROTIA JIANYE XU AJAY K. BHARDWAJ STEPHEN K. HAMILTON G. PHILIP ROBERTSON 《Global Change Biology Bioenergy》2011,3(5):401-412
The present study examined the effect of land conversion on carbon (C) fluxes using the eddy covariance technique at seven sites in southwestern Michigan (USA). Four sites had been managed as grasslands under the Conservation Reserve Program of the USDA. Three fields had previously been cultivated in a corn/soybean rotation with corn until 2008. The effects of land use change were studied during 2009 when six of the sites were converted to soybean cultivation, with the seventh site kept as a grassland. In winter, the corn fields were C neutral while the CRP lands were C sources, with average emissions of 15 g C m?2 month?1. In April 2009, while the corn fields continued to be a C source to the atmosphere, the CRPs switched to C sinks. In May, herbicide (Glyphosate) was applied to the vegetation before the planting of soybean. After tilling the killed‐grass and planting soybean in mid June, all sites continued to be C sources until the end of June. In July, fields previously planted with corn became C sinks, accumulating 15–50 g C m?2 month?1. In contrast, converted CRP sites continued to be net sources of C despite strong growth of soybean. The conversion of CRP to soybean induced net C emissions with net ecosystem exchange (NEE) ranging from 155.7 (±25) to 128.1 (±27) g C m?2 yr?1. The annual NEE at the reference site was ?81.6 (±26.5) g C m?2 yr?1 while at the sites converted from corn/soybean rotation was remarkably different with two sites being sinks of ?91 (±26) and ?56.0 (±20.7) g C m?2 yr?1 whereas one site was a source of 31.0 (±10.2) g C m?2 yr?1. This study shows how large C imbalances can be invoked in the first year by conversion of grasslands to biofuel crops. 相似文献
5.
Mark Richards Mark Pogson Marta Dondini Edward O. Jones Astley Hastings Dagmar N. Henner Matthew J. Tallis Eric Casella Robert W. Matthews Paul A. Henshall Suzanne Milner Gail Taylor Niall P. McNamara Jo U. Smith Pete Smith 《Global Change Biology Bioenergy》2017,9(3):627-644
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. 相似文献
6.
Niclas Ericsson Cecilia Sundberg Åke Nordberg Serina Ahlgren Per‐Anders Hansson 《Global Change Biology Bioenergy》2017,9(5):876-890
A life cycle assessment of a Swedish short‐rotation coppice willow bioenergy system generating electricity and heat was performed to investigate how the energy efficiency and time‐dependent climate impact were affected when the feedstock was converted into bio‐oil and char before generating electricity and heat, compared with being combusted directly. The study also investigated how the climate impact was affected when part of the char was applied to soil as biochar to act as a carbon sequestration agent and potential soil improver. The energy efficiencies were calculated separately for electricity and heat as the energy ratios between the amount of energy service delivered by the system compared to the amount of external energy inputs used in each scenario after having allocated the primary energy related to the inputs between the two energy services. The energy in the feedstock was not included in the external energy inputs. Direct combustion had the highest energy efficiency. It had energy ratios of 10 and 36 for electricity and heat, respectively. The least energy‐efficient scenario was the pyrolysis scenario where biochar was applied to soils. It had energy ratios of 4 and 12 for electricity and heat, respectively. The results showed that pyrolysis with carbon sequestration might be an option to counteract the current trend in global warming. The pyrolysis system with soil application of the biochar removed the largest amount of from the atmosphere. However, compared with the direct combustion scenario, the climate change mitigation potential depended on the energy system to which the bioenergy system delivered its energy services. A system expansion showed that direct combustion had the highest climate change mitigation potential when coal or natural gas were used as external energy sources to compensate for the lower energy efficiency of the pyrolysis scenario. 相似文献
7.
Fabio Sartori Rattan Lal Michael H. Ebinger David J. Parrish 《Critical Reviews in Plant Sciences》2006,25(5):441-472
Energy crops are fast-growing species whose biomass yields are dedicated to the production of more immediately usable energy forms, such as liquid fuels or electricity. Biomass-based energy sources can offset, or displace, some amount of fossil-fuel use. Energy derived from biomass provides 2 to 3% of the energy used in the U.S.A.; but, with the exception of corn-(Zea mays L.)-to-ethanol, very little energy is currently derived from dedicated energy crops. In addition to the fossil-fuel offset, energy cropping might also mitigate an accentuated greenhouse gas effect by causing a net sequestration of atmospheric C into soil organic C (SOC). Energy plantations of short-rotation woody crops (SRWC) or herbaceous crops (HC) can potentially be managed to favor SOC sequestration. This review is focused primarily on the potential to mitigate atmospheric CO2 emissions by fostering SOC sequestration in energy cropping systems deployed across the landscape in the United States. We know that land use affects the dynamics of the SOC pool, but data about spatial and temporal variability in the SOC pool under SRWC and HC are scanty due to lack of well-designed, long-term studies. The conventional methods of studying SOC fluxes involve paired-plot designs and chronosequences, but isotopic techniques may also be feasible in understanding temporal changes in SOC. The rate of accumulation of SOC depends on land-use history, soil type, vegetation type, harvesting cycle, and other management practices. The SOC pool tends to be enhanced more under deep-rooted grasses, N-fixers, and deciduous species. Carbon sequestration into recalcitrant forms in the SOC pool can be enhanced with some management practices (e.g., conservation tillage, fertilization, irrigation); but those practices can carry a fossil-C cost. Reported rates of SOC sequestration range from 0 to 1.6 Mg C ha?1 yr?1 under SRWC and 0 to 3 Mg C ha?1 yr?1 under HC. Production of 5 EJ of electricity from energy crops—a perhaps reasonable scenario for the U.S.A.—would require about 60 Mha. That amount of land is potentially available for conversion to energy plantations in the U.S.A. The land so managed could mitigate C emissions (through fossil C not emitted and SOC sequestered) by about 5.4 Mg C ha?1 yr?1. On 60 Mha, that would represent 324 Tg C yr?1—a 20% reduction from current fossil-fuel CO2 emissions. Advances in productivity of fast-growing SRWC and HC species suggest that deployment of energy cropping systems could be an effective strategy to reduce climate-altering effects of anthropogenic CO2 emissions and to meet global policy commitments. 相似文献
8.
Growing second‐generation energy crops on marginal land is conceptualized as one of the primary means of future bioenergy development. However, the extent to which marginal land can support energy crop production remains unclear. The Loess Plateau of China, one of the most seriously eroded regions of the world, is particularly rich in marginal land. On the basis of the previous field experiment of planting Miscanthus species in Qingyang of the Gansu Province, herein, we estimated the yield potential of Miscanthus lutarioriparius, the species with the highest biomass, across the Loess Plateau. On the basis of the radiation model previously developed from Miscanthus field trials, annual precipitation was introduced as an additional variable for yield estimate in the semiarid and semihumid regions of the Loess Plateau. Of 62 million hectares (Mha) of the Loess Plateau, our model estimated that 48.7 Mha can potentially support Miscanthus growth, with the average yield of 17.8 t ha?1 yr?1. After excluding high‐quality cropland and pasture and land suitable for afforestation, a total of 33.3 Mha of presumably marginal land were left available for producing the energy crop at the average yield of 16.8 t ha?1 yr?1 and the total annual yield of 0.56 billion tons. The analysis of environmental factors indicated that erosion, aridity, and field steepness were the primary contributors to the poor quality of the marginal land. The change of land uses from traditional agriculture to energy crop production may prevent further erosion and land degradation and consequently establish a sustainable economy for the region. 相似文献
9.
Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice? 总被引:1,自引:0,他引:1
Gerald Kalt Andreas Mayer Michaela C. Theurl Christian Lauk Karl‐Heinz Erb Helmut Haberl 《Global Change Biology Bioenergy》2019,11(11):1283-1297
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time. 相似文献
10.
Soil organic carbon (SOC), the largest terrestrial carbon pool, plays a significant role in soil‐related ecosystem services such as climate regulation, soil fertility and agricultural production. However, its fate under land use change is difficult to predict. A major issue is that SOC comprised of numerous organic compounds with potentially distinct and poorly understood turnover properties. Here we use spatiotemporal measurements of the particulate (POC), mineral‐associated (MOC) and charred SOC (COC) fractions from 176 trials involving changes in land use to assess their underlying controls. We find that the initial pool sizes of each of the three fractions consistently and dominantly control their temporal dynamics after changes in land use (i.e. the baseline effects). The effects of climate, soil physicochemical properties and plant residues, however, are fraction‐ and time‐dependent. Climate and soil properties show similar importance for controlling the dynamics of MOC and COC, while plant residue inputs (in term of their quantity and quality) are much less important. For POC, plant residues and management practices (e.g. the frequency of pasture in crop‐pasture rotation systems) are substantially more important, overriding the influence of climate. These results demonstrate the pivotal role of measuring SOC composition and considering fraction‐specific stabilization and destabilization processes for effective SOC management and reliable SOC predictions. 相似文献
11.
STOÉCIO M. F. MAIA STEPHEN M. OGLE CARLOS E. P. CERRI CARLOS C. CERRI 《Global Change Biology》2010,16(10):2775-2788
The southwestern portion of the Brazilian Amazon arguably represents the largest agricultural frontier in the world, and within this region the states of Rondônia and Mato Grosso have about 24% and 32% of their respective areas under agricultural management, which is almost half of the total area deforested in the Brazilian Amazon biome. Consequently, it is assumed that deforestation in this region has caused substantial loss of soil organic carbon (SOC). In this study, the changes in SOC stocks due to the land use change and management in the southwestern Amazon were estimated for two time periods from 1970–1985 and 1985–2002. An uncertainty analysis was also conducted using a Monte Carlo approach. The results showed that mineral soils converted to agricultural management lost a total of 5.37 and 3.74 Tg C yr?1 between 1970–1985 and 1985–2002, respectively, along the Brazilian Agricultural Frontier in the states of Mato Grosso and Rondônia. Uncertainties in these estimates were ±37.3% and ±38.6% during the first and second time periods, respectively. The largest sources of uncertainty were associated with reference carbon (C) stocks, expert knowledge surveys about grassland condition, and the management factors for nominal and degraded grasslands. These results showed that land use change and management created a net loss of C from soils, however, the change in SOC stocks decreased substantially from the first to the second time period due to the increase in land under no‐tillage. 相似文献
12.
Rebecca L. Rowe Dave Goulson C. Patrick Doncaster Donna J. Clarke Gail Taylor Mick E. Hanley 《Global Change Biology Bioenergy》2013,5(3):257-266
Despite a growing body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning important ecosystem services. In this study, we compare how the processes of predation by ground arthropods and litter decomposition varied between Short Rotation Coppice (SRC) willow bioenergy plantations and alternative land‐uses: arable and set‐aside (agricultural land taken out of production). We deployed litter bags to measure variation in decomposition, and a prey removal assay coupled with pitfall traps and direct searches to investigate variation in predation pressure. Decomposition rate was higher in willow SRC and set‐aside than in cereal crops. Willow SRC had the highest abundance and diversity of ground‐dwelling arthropod predators, but land‐use had no detectable influence on predation of fly pupae or the combined activity‐density of the two principal Coleoptera families (carabids and staphylinids). Overall, our study demonstrates that the conversion of arable land to SRC may have implications for the rate of some, but not all, ecosystem processes, and highlights the need for further research in this area. 相似文献
13.
Petra Sieber Niclas Ericsson Torun Hammar Per‐Anders Hansson 《Global Change Biology Bioenergy》2020,12(6):410-425
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses. 相似文献
14.
Bioenergy from plants and the sustainable yield challenge 总被引:3,自引:0,他引:3
Bioenergy from plants, particularly from perennial grasses and trees, could make a substantial contribution to alleviation of global problems in climate change and energy security if high yields can be sustained. Here, yield traits in a range of key bioenergy crops are reviewed, from which several targets for future improvement can be identified. Some are already the focus of genetically modified (GM) and non-GM approaches. However, the efficient growth strategies of perennial bioenergy crops rely on newly assimilated and recycled carbon and remobilized nitrogen in a continually shifting balance between sources and sinks. This balance is affected by biotic (e.g. pest, disease) and abiotic (e.g. drought) stresses. Future research should focus on three main challenges: changing (photo)thermal time sensitivity to lengthen the growing season without risking frost damage or limiting remobilization of nutritional elements following senescence; increasing aboveground biomass without depleting belowground reserves required for next year's growth and thus without increasing the requirement for nutrient applications; and increasing aboveground biomass without increasing water use. 相似文献
15.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks. 相似文献
16.
《Global Change Biology Bioenergy》2018,10(3):150-164
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry. 相似文献
17.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land. 相似文献
18.
Daniele De Rosa;Cristiano Ballabio;Emanuele Lugato;Matteo Fasiolo;Arwyn Jones;Panos Panagos; 《Global Change Biology》2024,30(1):e16992
The EU Soil Strategy 2030 aims to increase soil organic carbon (SOC) in agricultural land to enhance soil health and support biodiversity as well as to offset greenhouse gas emissions through soil carbon sequestration. Therefore, the quantification of current SOC stocks and the spatial identification of the main drivers of SOC changes is paramount in the preparation of agricultural policies aimed at enhancing the resilience of agricultural systems in the EU. In this context, changes of SOC stocks (Δ SOCs) for the EU + UK between 2009 and 2018 were estimated by fitting a quantile generalized additive model (qGAM) on data obtained from the revisited points of the Land Use/Land Cover Area Frame Survey (LUCAS) performed in 2009, 2015 and 2018. The analysis of the partial effects derived from the fitted qGAM model shows that land use and land use change observed in the 2009, 2015 and 2018 LUCAS campaigns (i.e. continuous grassland [GGG] or cropland [CCC], conversion grassland to cropland (GGC or GCC) and vice versa [CGG or CCG]) was one of the main drivers of SOC changes. The CCC was the factor that contributed to the lowest negative change on Δ SOC with an estimated partial effect of −0.04 ± 0.01 g C kg−1 year−1, while the GGG the highest positive change with an estimated partial effect of 0.49 ± 0.02 g C kg−1 year−1. This confirms the C sequestration potential of converting cropland to grassland. However, it is important to consider that local soil and environmental conditions may either diminish or enhance the grassland's positive effect on soil C storage. In the EU + UK, the estimated current (2018) topsoil (0–20 cm) SOC stock in agricultural land below 1000 m a.s.l was 9.3 Gt, with a Δ SOC of −0.75% in the period 2009–2018. The highest estimated SOC losses were concentrated in central-northern countries, while marginal losses were observed in the southeast. 相似文献
19.
Bioenergy has to meet increasing sustainability criteria in the EU putting conventional bioenergy crops under pressure. Alternatively, perennial bioenergy crops, such as Miscanthus, show higher greenhouse gas savings with similarly high energy yields. In addition, Miscanthus plantations may sequester additional soil organic carbon (SOC) to mitigate climate change. As the land‐use change in cropland to Miscanthus involves a C3‐C4 vegetation change (VC), it is possible to determine the dynamic of Miscanthus‐derived SOC (C4 carbon) and of the old SOC (C3 carbon) by the isotopic ratio of 13C to 12C. We sampled six croplands and adjacent Miscanthus plantations exceeding the age of 10 years across Europe. We found a mean C4 carbon sequestration rate of 0.78 ± 0.19 Mg ha?1 yr?1, which increased with mean annual temperature. At three of six sites, we found a significant increase in C3 carbon due to the application of organic fertilizers or difference in baseline SOC, which we define as non‐VC‐induced SOC changes. The Rothamsted Carbon Model was used to disentangle the decomposition of old C3 carbon and the non‐VC‐induced C3 carbon changes. Subsequently, this method was applied to eight more sites from the literature, resulting in a climate‐dependent VC‐induced SOC sequestration rate (0.40 ± 0.20 Mg ha?1 yr?1), as a step toward a default SOC change function for Miscanthus plantations on former croplands in Europe. Furthermore, we conducted a SOC fractionation to assess qualitative SOC changes and the incorporation of C4 carbon into the soil. Sixteen years after Miscanthus establishment, 68% of the particulate organic matter (POM) was Miscanthus‐derived in 0–10 cm depth. POM was thus the fastest cycling SOC fraction with a C4 carbon accumulation rate of 0.33 ± 0.05 Mg ha?1 yr?1. Miscanthus‐derived SOC also entered the NaOCl‐resistant fraction, comprising 12% in 0–10 cm, which indicates that this fraction was not an inert SOC pool. 相似文献
20.
Irina Kurganova Valentin Lopes de Gerenyu Johan Six Yakov Kuzyakov 《Global Change Biology》2014,20(3):938-947
The collapse of collective farming in Russia after 1990 and the subsequent economic crisis led to the abandonment of more than 45 million ha of arable lands (23% of the agricultural area). This was the most widespread and abrupt land use change in the 20th century in the northern hemisphere. The withdrawal of land area from cultivation led to several benefits including carbon (C) sequestration. Here, we provide a geographically complete and spatially detailed analysis of C sequestered in these abandoned lands. The average C accumulation rate in the upper 20 cm of mineral soil was 0.96 ± 0.08 Mg C ha?1 yr?1 for the first 20 years after abandonment and 0.19 ± 0.10 Mg C ha?1 yr?1 during the next 30 years of postagrogenic evolution and natural vegetation establishment. The amount of C sequestered over the period 1990–2009 accounts to 42.6 ± 3.8 Tg C per year. This C sequestration rate is equivalent to ca. 10% of the annual C sink in all Russian forests. Furthermore, it compensates all fire and postfire CO2 emissions in Russia and covers about 4% of the global CO2 release due to deforestation and other land use changes. Our assessment shows a significant mitigation of increasing atmospheric CO2 by prolonged C accumulation in Russian soils caused by collective farming collapse. 相似文献