首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2‐b:4,5‐b′]dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated benzo[1,2‐b:4,5‐b′] dithiophene (BDT)‐based donor–acceptor (D–A) polymers, poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐2′‐ethylhexyl‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (PBDTT‐SF‐TT) and poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (PBDTT‐SF‐BDD), namely, via an advantageous and synthetically economic route for the key monomer are reported herein. Synergistic effects of fluorination and alkylthiolation on BDT moieties are discussed in detail, which is based on the superior balance between high Voc and large Jsc when PBDTT‐SF‐TT/PC71BM and PBDTT‐SF‐BDD/PC71BM solar cells present their high Voc as 1.00 and 0.97 V (associated with their deep highest occupied molecular orbital level of ?5.54 and ?5.61 eV), a moderately high Jsc of 14.79 and 14.70 mA cm?2, and thus result a high power conversion efficiency of 9.07% and 9.72%, respectively. Meanwhile, for PBDTT‐SF‐TT, a very low energy loss of 0.59 eV is pronounced, leading to the promisingly high voltage, and furthermore performance study and morphological results declare an additive‐free PSC from PBDTT‐SF‐TT, which is beneficial to practical applications.  相似文献   

2.
A series of polycyclic aromatic hydrocarbons (PAHs) with extended π‐conjugated cores (from naphthalene, anthracene, pyrene, to perylene) are incorporated into nonfullerene acceptors for the first time. Four different fused‐ring electron acceptors (FREAs), i.e., DTN‐IC‐2Ph , DTA‐IC‐3Ph , DTP‐IC‐4Ph , and DTPy‐IC‐5Ph , are prepared via simple and facile synthetic procedures, yielding a remarkable platform to study the structure–property relationship for nonfullerene solar cells. With the PAH core being extended systematically, the gradually redshifted absorption with enhanced molar extinction coefficient (ε) is realized, the energy level of the highest occupied molecular orbital is up‐shifted, and the electron mobility is greatly enhanced. Meanwhile, the solubility decreases and the molecular packing becomes strengthened. As a result, with an optimized combination of these characteristics, DTP‐IC‐4Ph attains good solubility, high molar extinction coefficient, complementary absorption, suitable morphology, well‐matched energy levels, as well as efficient charge dissociation and transport in blend film. Consequently, the DTP‐IC‐4Ph ‐based solar cells with a donor polymer, poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) exhibit a promising power conversion efficiency of 10.37% without any additives, which is close to the best performance achieved in additive‐free nonfullerene solar cells (NFSCs). The results demonstrate that the PAH building blocks have great potential for the construction of novel FREAs for efficient additive‐free NFSCs.  相似文献   

3.
A series of PBDB‐TTn random donor copolymers is synthesized, consisting of an electron‐deficient benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD) unit and different ratios of two electron‐rich benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,2‐b]thiophene (TT) units, with intention to modulate the intrachain and/or interchain interactions and ultimately bulk‐heterojunction morphology evolution. A comparative study using 4 × 2 polymer solar cell (PSC) performance maps and each of the [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and the fused‐aromatic‐ring‐based molecule (m‐ITIC) acceptors are carried out. Given the similarities in their absorption ranges and energy levels, the PBDB‐TTn copolymers clearly reveal a change in the absorption coefficients upon optimization of the BDT to TT ratio in the backbone. Among the given acceptor combination sets, superior performances are observed in the case of PBDB‐TT5 blended with PC71BM (8.34 ± 0.10%) or m‐ITIC (11.10 ± 0.08%), and the dominant factors causing power conversion efficiency differences in them are found to be distinctly different. For example, the performances of PC71BM‐based PSCs are governed by size and population of face‐on crystallites, while intermixed morphology without the formation of large phase‐separated aggregates is the key factor for achieving high‐performance m‐ITIC‐based PSCs. This study presents a new sketch of structure–morphology–performance relationships for fullerene‐ versus nonfullerene‐based PSCs.  相似文献   

4.
Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2‐chlorophenol (2‐CP), ellipsometry‐based swelling experiments are used to investigate different co‐solvents for the fullerene‐casting solution. By tuning the Flory‐Huggins χ parameter of the 2‐CP/co‐solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)(3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl)]) and PC61BM (phenyl‐C61‐butyric acid methyl ester) materials combination that match those of blend‐cast films. Both semicrystalline (e.g., P3HT (poly(3‐hexylthiophene‐2,5‐diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8‐di(2‐butyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,5‐bis(4,4′‐bis(2‐octyl)dithieno[3,2‐b:2′3′‐d]silole‐2,6‐diyl)thiazolo[5,4‐d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent‐blend SqP design rules. Grazing‐incidence wide‐angle x‐ray diffraction experiments confirm that proper choice of the fullerene casting co‐solvent yields well‐ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.  相似文献   

5.
Molecular engineering of nonfullerene electron acceptors is of great importance for the development of organic photovoltaics. In this study, a series of methoxyl‐modified dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐based small‐molecule acceptor (SMA) isomers are synthesized and characterized to determine the effect of substitution position of the terminal group in these acceptor–donor–acceptor‐type SMAs. Minor changes in the substitution position are demonstrated to greatly influence the optoelectronic properties and molecular packing of the isomers. Note that SMAs with planar molecular backbones show more ordered molecular packing and smaller π–π stacking distances, thus dramatically higher electron mobilities relative to their counterparts with distorted end‐groups. By utilizing polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophen)‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione)] (PBDB‐T) as an electron donor, an optimum power conversion efficiency (PCE) of 11.9% is achieved in the device based on PBDB‐T:IT‐OM‐2, which is among the top efficiencies reported as of yet. Moreover, the PCE stays above 10% as the film thickness increases to 250 nm, which is very advantageous for large‐area printing. Overall, the intrinsic molecular properties as well as the morphologies of blends can be effectively modulated by manipulating the substituent position on the terminal groups, and the structure–property relationships gleaned from this study will aid in designing more efficient SMAs for versatile applications.  相似文献   

6.
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.  相似文献   

7.
Remarkable progress has been made in the development of high‐efficiency solution‐processable nonfullerene organic solar cells (OSCs). However, the effect of the vertical stratification of bulk heterojunction (BHJ) on the efficiency and stability of nonfullerene OSCs is not fully understood yet. In this work, we report our effort to understand the stability of nonfullerene OSCs, made with the binary blend poly[(2,6‐(4, 8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′] dithiophene‐4,8‐dione)] (PBDB‐T):3,9‐ bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐ dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′] dithiophene (ITIC) system. It shows that a continuous vertical phase separation process occurs, forming a PBDB‐T‐rich top surface and an ITIC‐rich bottom surface in PBDB‐T:ITIC BHJ during the aging period. A gradual decrease in the built‐in potential (V0) in the regular configuration PBDB‐T:ITIC OSCs, due to the interfacial reaction between the poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer and ITIC acceptor, is one of the reasons responsible for the performance deterioration. The reduction in V0, caused by an inevitable reaction at the ITIC/PEDOT:PSS interface in the OSCs, can be suppressed by introducing a MoO3 interfacial passivation layer. Retaining a stable and high V0 across the BHJ through interfacial modification and device engineering, e.g., as seen in the inverted PBDB‐T:ITIC OSCs, is a prerequisite for efficient and stable operation of nonfullerene OSCs.  相似文献   

8.
A new small‐molecule acceptor (2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f]indanone))7,12‐dihydro‐(4,4,10,10‐tetrakis(4‐hexylphenyl)‐5,11‐diocthylthieno[3′,2′:4,5]cyclopenta[1,2‐b]thieno[2″,3″:3′,4′]cyclopenta[1′,2′:4,5]thieno[2,3‐f][1]benzothiophene) (NNBDT) based on naphthyl‐fused indanone ending units is reported. This molecule shows a narrow optical bandgap of 1.43 eV and effective absorption in the range of 700–870 nm. The devices based on poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T):NNBDT yield a power conversion efficiency of 11.7% with a low energy loss of 0.55 eV and a high fill factor (FF) of 71.7%. Another acceptor (2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f]indanone))7,12‐dihydro‐4,4,7,7,12,12‐hexaoctyl‐4H‐cyclopenta[2″,1″:5,6;3″,4″:5′,6′]diindeno[1,2‐b:1′,2′‐b′]dithiophene (FDNCTF) is introduced as the third component to fabricate ternary devices. The two acceptors (NNBDT and FDNCTF) possess complementary absorption, same molecular orientation, and well‐miscible behavior. It is found that there exists a nonradiative energy transfer process from FDNCTF to NNBDT. The fullerene‐free ternary cells based on PBDB‐T:NNBDT:FDNCTF achieve a high efficiency of 12.8% with an improved short circuit current near 20 mA cm?2 in contrast to the binary devices. The result represents the best performance for fullerene‐free ternary solar cells reported to date and highlights the potential of ternary solar cells.  相似文献   

9.
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.  相似文献   

10.
The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 °C in bulk heterojunctions based on the benzodithiophene‐based polymer (the poly[[4,8‐bis[(2‐ethylhexyl)oxy]‐benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7:PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 °C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  相似文献   

11.
A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OSCs) has not yet been undertaken. In this study, the performance of ternary OSCs is investigated in a given poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PTB7‐Th:PC71BM) host set by introducing various small molecule donors (SMDs) with different terminal side‐chain lengths. As expected, the performance of binary OSCs with SMDs depends greatly on the side‐chain length. In contrast, it is observed that all SMD‐based ternary OSCs exhibit almost identical and high power‐conversion efficiencies of 12.0–12.2%. This minor performance variation is attributed to good molecular compatibility between the two donor components, as evidenced by in‐depth electrical and morphological investigations. These results highlight that the alloy‐like structure formed due to the high compatibility of the donor molecules has a more significant effect on the overall performance than the side‐chain length, offering a new guideline for pairing donor components for achieving high‐performance ternary OSCs.  相似文献   

12.
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] ( PBDTT‐FTTE ) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} ( P(NDI2OD‐T2) ) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.  相似文献   

13.
Despite the potential of ternary polymer solar cells (PSCs) to improve photocurrents, ternary architecture is not widely utilized for PSCs because its application has been shown to reduce fill factor (FF). In this paper, a novel technique is reported for achieving highly efficient ternary PSCs without this characteristic sharp decrease in FF by matching the highest occupied molecular orbital (HOMO) energy levels of two donor polymers. Our ternary device—made from a blend of wide‐bandgap poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione) (PBDT‐DPPD) polymer, narrow‐bandgap poly[4,8‐bis[5‐(2‐ethylhexyl)‐2‐thienyl]benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐ 6‐diyl)] (PTB7‐Th) polymer, and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM)—exhibits a maximum power conversion efficiency of 10.42% with an open‐circuit voltage of 0.80 V, a short‐circuit current of 17.61 mA cm?2, and an FF of 0.74. In addition, this concept is extended to quaternary PSCs made by using three different donor polymers with similar HOMO levels. Interestingly, the quaternary PSCs also yield a good FF (≈0.70)—similar to those of corresponding binary PSCs. This study confirms that the HOMO levels of the polymers used on the photoactive layer of PSCs are a crucial determinant of a high FF.  相似文献   

14.
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b] thiophenediyl]] (PTB7):PC71BM by ≈13% and ≈8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near‐field and far‐field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near‐fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.  相似文献   

15.
To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothia­diazole)] (C‐PCPDTBT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells via excitation of the low‐energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon‐analogue, poly[(4,4‐bis(2‐ethylhexyl)dithieno[3,2‐b:2,3d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (Si‐PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C‐PCPDTBT and Si‐PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si‐PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.  相似文献   

16.
Optical spacers based on metal oxide layers have been intensively studied in poly(3‐hexylthiophene) (P3HT) based polymer solar cells for optimizing light distribution inside the device, but to date, the potential of such a metal oxide spacer to improve the electronic performance of the polymer solar cells simultaneously has not yet be investigated. Here, a detailed study of performance improvement in high efficient polymer solar cells by insertion of solution‐processed ZnO optical spacer using ethanolamine surface modification is reported. Insertion of the modified ZnO optical spacer strongly improves the performance of polymer solar cells even in the absence of an increase in light absorption. The electric improvements of the device are related to improved electron extraction, reduced contact barrier, and reduced recombination at the cathode. Importantly, it is shown for the first time that the morphology of optical spacer layer is a crucial parameter to obtain highly efficient solar cells in normal device structures. By optimizing optical spacer effects, contact resistance, and morphology of ZnO optical spacers, poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b]thiophenediyl]] (PTB7):[6,6]‐phenyl‐C71‐butyric acid (PC70BM) bulk heterojunction solar cells with conversion efficiency of 7.6% are obtained in normal device structures with all‐solution‐processed interlayers.  相似文献   

17.
The effects of heteroatom substitution from a silicon atom to a germanium atom in donor‐acceptor type low band gap copolymers, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (PSiBTBT) and poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]germole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (PGeBTBT), are studied. The optoelectronic and charge transport properties of these polymers are investigated with a particular focus on their use for organic photovoltaic (OPV) devices in blends with phenyl‐C70‐butyric acid methyl ester (PC70BM). It is found that the longer C‐Ge bond length, in comparison to C‐Si, modifies the molecular conformation and leads to a more planar chain conformation in PGeBTBT than PSiBTBT. This increase in molecular planarity leads to enhanced crystallinity and an increased preference for a face‐on backbone orientation, thus leading to higher charge carrier mobility in the diode configuration. These results provide important insight into the impact of the heavy atom substitution on the molecular packing and device performance of polymers based on the poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole) (PCPDTBT) backbone.  相似文献   

18.
In this paper, two novel D‐π‐D hole‐transporting materials (HTM) are reported, abbreviated as BDT‐PTZ and BDT‐POZ , which consist of 4,8‐di(hexylthio)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDT) as π‐conjugated linker, and N‐(6‐bromohexyl) phenothiazine (PTZ)/N‐(6‐bromohexyl) phenoxazine (POZ) as donor units. The above two HTMs are deployed in p‐i‐n perovskite solar cells (PSCs) as dopant‐free HT layers, exhibiting excellent power conversion efficiencies of 18.26% and 19.16%, respectively. Particularly, BDT‐POZ demonstrates a superior fill factor of 81.7%, which is consistent with its more efficient hole extraction and transport verified via steady‐state/transient fluorescence spectra and space‐charge‐limited current technique. Single‐crystal X‐ray diffraction characterization implies these two molecules present diverse packing tendencies, which may account for various interfacial hole‐transport ability in PSCs.  相似文献   

19.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

20.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号