首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.  相似文献   

2.
Low‐temperature‐processed perovskite solar cells (PSCs), which can be fabricated on rigid or flexible substrates, are attracting increasing attention because they have a wide range of potential applications. In this study, the stability of reduced graphene oxide and the ability of a poly(triarylamine) underlayer to improve the quality of overlying perovskite films to construct hole‐transport bilayer by means of a low‐temperature method are taken advantage of. The bilayer is used in both flexible and rigid inverted planar PSCs with the following configuration: substrate/indium tin oxide/reduced graphene oxide/polytriarylamine/CH3NH3PbI3/PCBM/bathocuproine/Ag (PCBM = [6,6]‐phenyl‐C61‐butyric acid methyl ester). The flexible and rigid PSCs show power conversion efficiencies of 15.7 and 17.2%, respectively, for the aperture area of 1.02 cm2. Moreover, the PSC based the bilayer shows outstanding light‐soaking stability, retaining ≈90% of its original efficiency after continuous illumination for 500 h at 100 mW cm?2.  相似文献   

3.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

4.
Adding a small amount of CsI into mixed cation‐halide perovskite film via a one‐step method has been demonstrated as an excellent strategy for high‐performance perovskite solar cells (PSCs). However, the one‐step method generally relies on an antisolvent washing process, which is hard to control and not suitable for fabricating large‐area devices. Here, CsF is employed and Cs is incorporated into perovskite film via a two‐step method. It is revealed that CsF can effectively diffuse into the PbI2 seed film, and drastically enhances perovskite crystallization, leading to high‐quality Cs‐doped perovskite film with a very long photoluminescence carrier lifetime (1413 ns), remarkable light stability, thermal stability, and humidity stability. The fabricated PSCs show power conversion efficiency (PCE) of over 21%, and they are highly thermally stable: in the aging test at 60 °C for 300 h, 96% of the original PCE remains. The CsF incorporation process provides a new avenue for stable high‐performance PSCs.  相似文献   

5.
The performance of perovskite solar cells (PSCs) relies on the synthesis method and chemical composition of the perovskite materials. So far, PSCs that have adopted two‐step sequential deposited perovskite with the state‐of‐art composition (FAPbI3)1?x(MAPbBr3)x (x < 0.05) have achieved record power conversion efficiency (PCE), while their one‐step antisolvent dripping counterparts with typical composition Cs0.05FA0.81MA0.14Pb(I0.85Br0.15)3 with more bromine have exhibited much better long‐term operational stability. Thus, halogen engineering that aims to elevate bromine content in sequential deposited perovskite film would push operational stability of PSCs toward that of antisolvent dripping deposited perovskite materials. Here, a Br‐rich seeding growth method is devised and perovskite seed solution with high bromine content is introduced into a PbI2 precursor, leading to bromine incorporation in the resulting perovskite film. Photovoltaic devices fabricated by Br‐rich seeding growth method exhibit a PCE of 21.5%, similar to 21.6% for PSCs having lower bromine content. Whereas, the operational stability of PSCs with higher bromine content is significantly enhanced, with over 80% of initial PCE retained after 500 h tracking at maximum power point under 1‐sun illumination. This work highlights the vital importance of halogen composition for the operational stability of PSCs, and introduces an effective way to incorporate bromine into mixed‐cation‐halide perovskite film via sequential deposition method.  相似文献   

6.
Supported by the density functional theory (DFT) calculations, for the first time, a fluorinated aromatic cation, 2‐(4‐fluorophenyl)ethyl ammonium iodide (FPEAI), is introduced to grow in situ a low dimensional perovskite layer atop 3D perovskite film with excess PbI2. The resulted (p‐FC6H4C2H4NH3)2[PbI4] perovskite functions as a protective capping layer to protect the 3D perovskite from moisture. In the meantime, the thin layer facilitates charge transfer at the interfaces, thereby reducing the nonradiative recombination pathways. Laser scanning confocal microscopy unveils visually the distribution of the 2D perovskite layer on top of the 3D perovskite. When employing the 3D–2D perovskite as the absorbing layer in the photovoltaic cells, a high power conversion efficiency of 20.54% is realized. Superior device performance and moisture stability are observed with the modified perovskite over the whole stability test period.  相似文献   

7.
Carbon‐based hole transport material (HTM)‐free perovskite solar cells (PSCs) have shown much promise for practical applications because of their high stability and low cost. However, the efficiencies of this kind of PSCs are still relatively low, especially for the simplest paintable carbon‐based PSCs, in comparison with the organic HTM‐based PSCs. This can be imputed to the perovskite deposition methods that are not very suitable for this kind of devices. A solvent engineering strategy based on two‐step sequential method is exploited to prepare a high‐quality perovskite layer for the paintable carbon‐based PSCs in which the solvent for CH3NH3I (MAI) solution at the second step is changed from isopropanol (IPA) to a mixed solvent of IPA/Cyclohexane (CYHEX). This mixed solvent not only accelerates the conversion of PbI2 to CH3NH3PbI3 but also suppresses the Ostwald ripening process resulting in a high‐quality perovskite layer, e.g., pure phase, even surface, and compact capping layer. The paintable carbon‐based PSCs fabricated from IPA/CYHEX solvent exhibits a considerable enhancement in photovoltaic performance and performance reproducibility in comparison with that from pure IPA, especially on fill factor (FF), owing mainly to the better contact of perovskite/carbon interface, lower trap density in perovskite, higher light absorption ability, and faster charge transport of perovskite layer. As a result, the highest power conversion efficiency (PCE) of 14.38% is obtained, which is a record value for carbon‐based HTM‐free PSCs. Furthermore, a PCE of as high as 10% is achieved for the large area device (1 cm2), also the highest of its kind.  相似文献   

8.
The influence of illumination on the long‐term performance of planar structured perovskite solar cells (PSCs) is investigated using fast and spatially resolved luminescence imaging. The authors analyze the effect of illuminated current density–voltage (JV) and light‐soaking measurements on pristine PSCs by providing visual evidence for the spatial inhomogeneous evolution of device performance. Regions that are exposed to light initially produce stronger electroluminescence signals than surrounding unilluminated regions, mainly due to a lower contact resistance and, possibly, higher charge collection efficiency. Over a period of several days, however, these initially illuminated regions appear to degrade more quickly despite the device being stored in a dark, moisture‐ and oxygen‐free environment. Using transmission electron microscopy, this accelerated degradation is attributed to delamination between the perovskite and the titanium dioxide (TiO2) layer. An ion migration mechanism is proposed for this delamination process, which is in accordance with previous current–voltage hysteresis observations. These results provide evidence for the intrinsic instability of CH3NH3PbI3‐based devices under illumination and have major implications for the design of PSCs from the standpoint of long‐term performance and stability.  相似文献   

9.
After rapid progress over the past five years, organic–inorganic perovskite solar cells (PSCs) currently exhibit photoconversion efficiencies comparable to the best commercially available photovoltaic technologies. However, instabilities in the materials and devices, primarily due to reactions with water, have kept PSCs from entering the marketplace. Here, laser beam induced current imaging is used to investigate the spatial and temporal evolution of the quantum efficiency of perovskite solar cells under controlled humidity conditions. Several interesting mechanistic aspects are revealed as the degradation proceeds along a four‐stage process. Three of the four stages can be reversed, while the fourth stage leads to irreversible decomposition of the photoactive perovskite material. A series of reactions in the PbI2‐CH3NH3I‐H2O system explains the interplay between the interactions with water and the overall stability. Understanding of the degradation mechanisms of PSCs on a microscopic level gives insight into improving the long‐term stability.  相似文献   

10.
Herein, this study reports high‐efficiency, low‐temperature ZnO based planar perovskite solar cells (PSCs) with state‐of‐the‐art performance. They are achieved via a strategy that combines dual‐functional self‐assembled monolayer (SAM) modification of ZnO electron accepting layers (EALs) with sequential deposition of perovskite active layers. The SAMs, constructed from newly synthesized molecules with high dipole moments, act both as excellent surface wetting control layers and as electric dipole layers for ZnO‐EALs. The insertion of SAMs improves the quality of PbI2 layers and final perovskite layers during sequential deposition, while charge extraction is enhanced via electric dipole effects. Leveraged by SAM modification, our low‐temperature ZnO based PSCs achieve an unprecedentedly high power conversion efficiency of 18.82% with a VOC of 1.13 V, a JSC of 21.72 mA cm?2, and a FF of 0.76. The strategy used in this study can be further developed to produce additional performance enhancements or fabrication temperature reductions.  相似文献   

11.
Chemical passivation is an effective approach to suppress the grain surface dominated charge recombination in perovskite solar cells (PSCs). However, the passivation effect is usually labile on perovskite crystal surface since most passivating agents are weakly anchored. Here, the use of a bidentate molecule, 2‐mercaptopyridine (2‐MP), to increase anchoring strength for improving the passivation efficacy and stability synchronously is demonstrated. Compared to monodentate counterparts of pyridine and p‐toluenethiol, 2‐MP passivation on CH3NH3PbI3 film results in twofold improvement of photoluminescence lifetime and remarkably enhanced tolerance to chlorobenzene washing and vacuum heating, which improve the power conversion efficiency of n–i–p planar structured PSCs from 18.35% to 20.28%, with open‐circuit voltage approaching 1.18 V. Moreover, the CH3NH3PbI3 films passivated with 2‐MP exhibit unprecedented humid‐stability that they can be exposed to saturated humidity for at least 5 h, mainly due to the passivation induced surface deactivation, which renders the unencapsulated devices retaining 93% of the initial efficiency after 60 days aging in air with relative humidity of 60–70%.  相似文献   

12.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

13.
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.  相似文献   

14.
A high level of automation is desirable to facilitate the lab‐to‐fab process transfer of the emerging perovskite‐based solar technology. Here, an automated aerosol‐jet printing technique is introduced for precisely controlling the thin‐film perovskite growth in a planar heterojunction p–i–n solar cell device structure. The roles of some of the user defined parameters from a computer‐aided design file are studied for the reproducible fabrication of pure CH3NH3PbI3 thin films under near ambient conditions. Preliminary power conversion efficiencies up to 15.4% are achieved when such films are incorporated in a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate‐perovskite‐phenyl‐C71‐butyric acid methyl ester type device format. It is further shown that the deposition of atomized materials in the form of a gaseous mist helps to form a highly uniform and PbI2 residue‐free CH3NH3PbI3 film and offers advantages over the conventional two‐step solution approach by avoiding the detrimental solid–liquid interface induced perovskite crystallization. Ultimately, by integrating full 3D motion control, the fabrication of perovskite layers directly on a 3D curved surface becomes possible. This work suggests that 3D automation with aerosol‐jet printing, once fully optimized, could form a universal platform for the lab‐to‐fab process transfer of solution‐based perovskite photovoltaics and steer development of new design strategies for numerous embedded structural power applications.  相似文献   

15.
Perovskite solar cells (PSCs) have been emerging as a breakthrough photovoltaic technology, holding unprecedented promise for low‐cost, high‐efficiency renewable electricity generation. However, potential toxicity associated with the state‐of‐the‐art lead‐containing PSCs has become a major concern. The past research in the development of lead‐free PSCs has met with mixed success. Herein, the promise of coarse‐grained B‐γ‐CsSnI3 perovskite thin films as light absorber for efficient lead‐free PSCs is demonstrated. Thermally‐driven solid‐state coarsening of B‐γ‐CsSnI3 perovskite grains employed here is accompanied by an increase of tin‐vacancy concentration in their crystal structure, as supported by first‐principles calculations. The optimal device architecture for the efficient photovoltaic operation of these B‐γ‐CsSnI3 thin films is identified through exploration of several device architectures. Via modulation of the B‐γ‐CsSnI3 grain coarsening, together with the use of the optimal PSC architecture, planar heterojunction‐depleted B‐γ‐CsSnI3 PSCs with power conversion efficiency up to 3.31% are achieved without the use of any additives. The demonstrated strategies provide guidelines and prospects for developing future high‐performance lead‐free PVs.  相似文献   

16.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

17.
Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions.  相似文献   

18.
Thermal degradation in perovskite solar cells is still an unsettled issue that limits its further development. In this study, 2‐(1H‐pyrazol‐1‐yl)pyridine is introduced into lead halide 3D perovskites, which allows 1D–3D hybrid perovskite materials to be obtained. The heterostructural 1D–3D perovskites are proved to be capable of remarkably prolonging the photoluminescence decay lifetime and suppressing charge carrier recombination in comparison to conventional 3D perovskites. The intrinsic properties of thermodynamically stable yet kinetically labile 1D materials allow the system to alleviate the lattice mismatch and passivate the interface traps of heterojunction region of 1D–3D hybrid perovskites that may occur during the crystal growth process. Importantly, the as‐fabricated 1D–3D perovskite solar cells display a thermodynamic self‐healing ability, which is induced through blocking the ion‐migration channels of A‐site ions by the flexible 1D perovskite with less densely close‐packed structure. Particularly, the power conversion efficiency of as‐fabricated unencapsulated 1D–3D perovskite solar cells is demonstrated to be reversible under temperature cycling (25–85 °C) at 55% relative humidity, which largely outperforms the pure 3D perovskite solar cell. The present study provides a facile approach to fabricate 1D–3D perovskite solar cells with high efficiency and long‐term stability.  相似文献   

19.
The time evolution of the current–voltage characteristic of planar heterojunction perovskite solar cell (PSC) is studied within an operating temperature range of 200–325 K. The photovoltaic (PV) performance of PSC is found to be influenced by five carrier transport pathways, which strongly depend on operating temperature and light illumination. At low temperature, a severe degradation of PV performance is presented but temporary. This is attributed to ion accumulation at the TiO2/CH3NH3PbI3 and hole transport material/CH3NH3PbI3 interfacial regions, as an origin of screening effect of built‐in field, evidenced by the low external quantum efficiency (EQE). By light illumination at open‐circuit, a steady PV performance will be reached and the stabilization time increases with decreasing temperature. The recovery of PV performance is attributed to ion diffusion in CH3NH3PbI3 layer in the absence of electric field. The EQE observations indicate that photogenerated carriers are separated and collected efficiently after a long time light illumination due to a reduction of the screening effect. At high temperature, because of the low ion density at interfacial regions, the PV performance shows a quick response to light. These findings may help understanding of the mechanism of temperature‐dependent photogenerated carrier transport in the PSC.  相似文献   

20.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号