首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The performance of perovskite solar cells is sensitive to detrimental defects, which are prone to accumulate at the interfaces and grain boundaries of bulk perovskite films. Defect passivation at each region will lead to reduced trap density and thus less nonradiative recombination loss. However, it is challenging to passivate defects at both the grain boundaries and the bottom charge transport layer/perovskite interface, mainly due to the solvent incompatibility and complexity in perovskite formation. Here SnO2‐KCl composite electron transport layer (ETL) is utilized in planar perovskite solar cells to simultaneously passivate the defects at the ETL/perovskite interface and the grain boundaries of perovskite film. The K and Cl ions at the ETL/perovskite interface passivate the ETL/perovskite contact. Meanwhile, K ions from the ETL can diffuse through the perovskite film and passivate the grain boundaries. An enhancement of open‐circuit voltage from 1.077 to 1.137 V and a corresponding power conversion efficiency increasing from 20.2% to 22.2% are achieved for the devices using SnO2‐KCl composite ETL. The composite ETL strategy reported herein provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells.  相似文献   

2.
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light.  相似文献   

3.
Compact TiO2 is widely used as an electron transport material in planar‐perovskite solar cells. However, TiO2‐based planar‐perovskite solar cells exhibit low efficiencies due to intrinsic problems such as the unsuitable conduction band energy and low electron extraction ability of TiO2. Herein, the planar TiO2 electron transport layer (ETL) of perovskite solar cells is modified with ionic salt CuI via a simple one‐step spin‐coating process. The p‐type nature of the CuI islands on the TiO2 surface leads to modification of the TiO2 band alignment, resulting in barrier‐free contacts and increased open‐circuit voltage. It is found that the polarity of the CuI‐modified TiO2 surface can pull electrons to the interface between the perovskite and the TiO2, which improves electron extraction and reduces nonradiative recombination. The CuI solution concentration is varied to control the electron extraction of the modified TiO2 ETL, and the optimized device shows a high efficiency of 19.0%. In addition, the optimized device shows negligible hysteresis, which is believed to be due to the removal of trap sites and effective electron extraction by CuI‐modified TiO2. These results demonstrate the hitherto unknown effect of p‐type ionic salts on electron transport material.  相似文献   

4.
Mixed iodide‐bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite‐silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal‐photostability of wide‐bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA‐modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open‐circuit voltage (V oc) of 1.24 V.  相似文献   

5.
In addition to a good perovskite light absorbing layer, the hole and electron transport layers play a crucial role in achieving high‐efficiency perovskite solar cells. Here, a simple, one‐step, solution‐based method is introduced for fabricating high quality indium‐doped titanium oxide electron transport layers. It is shown that indium‐doping improves both the conductivity of the transport layer and the band alignment at the ETL/perovskite interface compared to pure TiO2, boosting the fill‐factor and voltage of perovskite cells. Using the optimized transport layers, a high steady‐state efficiency of 17.9% for CH3NH3PbI3‐based cells and 19.3% for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3‐based cells is demonstrated, corresponding to absolute efficiency gains of 4.4% and 1.2% respectively compared to TiO2‐based control cells. In addition, a steady‐state efficiency of 16.6% for a semi‐transparent cell is reported and it is used to achieve a four‐terminal perovskite‐silicon tandem cell with a steady‐state efficiency of 24.5%.  相似文献   

6.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

7.
In the present work, a Pb‐assisted two step method is successfully proposed to fabricate high‐quality CH3NH3Sn0.5Pb0.5I3 (MASn0.5Pb0.5I3) perovskite film on the indium tin oxide (ITO) glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The film shows regular crystalline grains with a flat and compact morphology as well as full coverage on the planar PEDOT:PSS substrate. Remarkably, corresponding devices ITO/PEDOT:PSS/MASn0.5Pb0.5I3/C60/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/Ag are fabricated with high reproducibility, achieving a high power conversion efficiency of 13.6%, which is, to the best of knowledge, the most efficient solar cell based on Sn‐based perovskite.  相似文献   

8.
High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiOx) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiOx hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiOx HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiOx show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiOx HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm2.  相似文献   

9.
An electrospray deposition technique to fabricate a perovskite (CH3NH3PbI3) layer for highly stable and efficient perovskite solar cells at ambient humidity (30%–50% relative humidity) conditions is demonstrated. A detailed study is conducted to determine the effect of different electrospray parameters on the device performance and to provide a mechanistic explanation of the superior stability of the films. Due to the controlled reactivity that results in the formation of a smooth perovskite film, these cells exhibit stability exceeding 4000 h, in contrast to much lower stability of those fabricated by conventional spin coating methods. Furthermore, the perovskite film deposited by electrospray methods exhibits a self‐healing behavior when exposed to moisture. The authors hypothesize the formation of an intermediate metastable phase and smooth morphology of the film as the reason for this enhanced stability. Electrospray is a scalable technique that provides precise control over the amount of material required for deposition, reducing significant material loss that occurs in conventional solution‐based methods. Overall, this work shows that stability of perovskite solar cells can be improved by fabrication using a well controlled and optimized electrospray technique, without the use of any additives or cell encapsulants.  相似文献   

10.
Planar perovskite solar cells obtained by low‐temperature solution processing are of great promise, given a high compatibility with flexible substrates and perovskite‐based tandem devices, whilst benefitting from relatively simple manufacturing methods. However, ionic defects at surfaces usually cause detrimental carrier recombination, which links to one of dominant losses in device performance, slow transient responses, and notorious hysteresis. Here, it is shown that several different types of ionic defects can be simultaneously passivated by simple inorganic binary alkaline halide salts with their cations and anions. Compared to previous literature reports, this work demonstrates a promising passivation technology for perovskite solar cells. The efficient defect passivation significantly suppresses the recombination at the SnO2/perovskite interface, contributing to an increase in the open‐circuit voltage, the fast response of steady‐state efficiency, and the elimination of hysteresis. By this strong leveraging of multiple‐element passivation, low‐temperature‐processed, planar‐structured perovskite solar cells of 20.5% efficiencies, having negligible hysteresis, are obtained. Moreover, this defect‐passivation enhances the stability of solar cells with efficiency beyond 20%, retaining 90% of their initial performance after 30 d. This approach aims at developing the concept of defect engineering, which can be expanded to multiple‐element passivation from monoelement counterparts using simple and low‐cost inorganic materials.  相似文献   

11.
A high level of automation is desirable to facilitate the lab‐to‐fab process transfer of the emerging perovskite‐based solar technology. Here, an automated aerosol‐jet printing technique is introduced for precisely controlling the thin‐film perovskite growth in a planar heterojunction p–i–n solar cell device structure. The roles of some of the user defined parameters from a computer‐aided design file are studied for the reproducible fabrication of pure CH3NH3PbI3 thin films under near ambient conditions. Preliminary power conversion efficiencies up to 15.4% are achieved when such films are incorporated in a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate‐perovskite‐phenyl‐C71‐butyric acid methyl ester type device format. It is further shown that the deposition of atomized materials in the form of a gaseous mist helps to form a highly uniform and PbI2 residue‐free CH3NH3PbI3 film and offers advantages over the conventional two‐step solution approach by avoiding the detrimental solid–liquid interface induced perovskite crystallization. Ultimately, by integrating full 3D motion control, the fabrication of perovskite layers directly on a 3D curved surface becomes possible. This work suggests that 3D automation with aerosol‐jet printing, once fully optimized, could form a universal platform for the lab‐to‐fab process transfer of solution‐based perovskite photovoltaics and steer development of new design strategies for numerous embedded structural power applications.  相似文献   

12.
The development of effective and stable hole transporting materials (HTMs) is very important for achieving high‐performance planar perovskite solar cells (PSCs). Herein, copper salts (cuprous thiocyanate (CuSCN) or cuprous iodide (CuI)) doped 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (spiro‐OMeTAD) based on a solution processing as the HTM in PSCs is demonstrated. The incorporation of CuSCN (or CuI) realizes a p‐type doping with efficient charge transfer complex, which results in improved film conductivity and hole mobility in spiro‐OMeTAD:CuSCN (or CuI) composite films. As a result, the PCE is largely improved from 14.82% to 18.02% due to obvious enhancements in the cell parameters of short‐circuit current density and fill factor. Besides the HTM role, the composite film can suppress the film aggregation and crystallization of spiro‐OMeTAD films with reduced pinholes and voids, which slows down the perovskite decomposition by avoiding the moisture infiltration to some extent. The finding in this work provides a simple method to improve the efficiency and stability of planar perovskite solar cells.  相似文献   

13.
As perovskite solar cells (PSCs) are highly efficient, demonstration of high‐performance printed devices becomes important. 2D/3D heterostructures have recently emerged as an attractive way to relieving the film inhomogeneity and instability in perovskite devices. In this work, a 2D/3D ensemble with 2D perovskites self‐assembled atop 3D methylammonium lead triiodide (MAPbI3) via a one‐step printing process is shown. A clean and flat interface is observed in the 2D/3D bilayer heterostructure for the first time. The 2D perovskite capping layer significantly suppresses nonradiative charge recombination, resulting in a marked increase in open‐circuit voltage (VOC) of the devices by up to 100 mV. An ultrahigh VOC of 1.20 V is achieved for MAPbI3 PSCs, corresponding to 91% of the Shockley–Queisser limit. Moreover, notable enhancement in light, thermal, and moisture stability is obtained as a result of the protective barrier of the 2D perovskites. These results suggest a viable approach for scalable fabrication of highly efficient perovskite solar cells with enhanced environmental stability.  相似文献   

14.
Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C‐9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro‐OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time‐resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro‐OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS‐integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro‐OMeTAD. Importantly, the low‐cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.  相似文献   

15.
Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs.  相似文献   

16.
Block‐copolymer templated chemical solution deposition is used to prepare mesoporous Nd‐doped TiO2 electrodes for perovskite‐based solar cells. X‐ray diffraction and photothermal deflection spectroscopy show substitutional incorporation into the TiO2 crystal lattice for low Nd concentration, and increasing interstitial doping for higher concentrations. Substitutional Nd‐doping leads to an increase in stability and performance of perovskite solar cells by eliminating defects and thus increasing electron transport and reducing charge recombination in the mesoporous TiO2. The optimized doping concentration of 0.3% Nd enables the preparation of perovskite solar cells with stabilized power conversion efficiency of >18%.  相似文献   

17.
Perovskite solar cells are one of the most promising photovoltaic technologies, although their molecular level design and stability toward environmental factors remain a challenge. Layered 2D Ruddlesden–Popper perovskite phases feature an organic spacer bilayer that enhances their environmental stability. Here, the concept of supramolecular engineering of 2D perovskite materials is demonstrated in the case of formamidinium (FA) containing A2FAn?1PbnI3n+1 formulations by employing (adamantan‐1‐yl)methanammonium (A) spacers exhibiting propensity for strong Van der Waals interactions complemented by structural adaptability. The molecular design translates into desirable structural features and phases with different compositions and dimensionalities, identified uniquely at the atomic level by solid‐state NMR spectroscopy. For A2FA2Pb3I10, efficiencies exceeding 7% in mesoscopic device architectures without any additional treatment or use of antisolvents for ambient temperature film deposition are achieved. This performance improvement over the state‐of‐the‐art FA‐based 2D perovskites is accompanied by high operational stability under humid ambient conditions, which illustrates the utility of the approach in perovskite solar cells and sets the basis for advanced supramolecular design in the future.  相似文献   

18.
High temperature stable inorganic CsPbX3 (X: I, Br, or mixed halides) perovskites with their bandgap tailored by tuning the halide composition offer promising opportunities in the design of ideal top cells for high‐efficiency tandem solar cells. Unfortunately, the current high‐efficiency CsPbX3 perovskite solar cells (PSCs) are prepared in vacuum, a moisture‐free glovebox or other low‐humidity conditions due to their poor moisture stability. Herein, a new precursor system (HCOOCs, HPbI3, and HPbBr3) is developed to replace the traditional precursors (CsI, PbI2, and PbBr2) commonly used for solar cells of this type. Both the experiments and calculations reveal that a new complex (HCOOH?Cs+) is generated in this precursor system. The new complex is not only stable against aging in humid air ambient at 91% relative humidity, but also effectively slows the perovskite crystallization, making it possible to eliminate the popular antisolvent used in the perovskite CsPbI2Br film deposition. The CsPbI2Br PSCs based on the new precursor system achieve a champion efficiency of 16.14%, the highest for inorganic PSCs prepared in ambient air conditions. Meanwhile, high air stability is demonstrated for an unencapsulated CsPbI2Br PSC with 92% of the original efficiency remaining after more than 800 h aging in ambient air.  相似文献   

19.
An open‐circuit voltage (Voc) of 1.57 V under simulated AM1.5 sunlight in planar MAPbBr3 solar cells with carbon (graphite) electrodes is obtained. The hole‐transport‐material‐free MAPbBr3 solar cells with the normal architecture (FTO/TiO2/MAPbBr3/carbon) show little hysteresis during current–voltage sweep under simulated AM1.5 sunlight. A solar‐to‐electricity power conversion efficiency of 8.70% is achieved with the champion device. Accordingly, it is proposed that the carbon electrodes are effective to extract photogenerated holes in MAPbBr3 solar cells, and the industry‐applicable carbon electrodes will not limit the performance of bromide‐based perovskite solar cells. Based on the analysis of the band alignment, it is found that the voltage (energy) loss across the interface between MAPbBr3 and carbon is very small compared to the offset between the valence band maximum of MAPbBr3 and the work function of graphite. This finding implies either Fermi level pinning or highly doped region inside MAPbBr3 layer exists. The band‐edge electroluminescence spectra of MAPbBr3 from the solar cells further support no back‐transfer pathways of electrons across the MAPbBr3/TiO2 interface.  相似文献   

20.
Four π‐extended phosphoniumfluorene electrolytes (π‐PFEs) are introduced as hole‐blocking layers (HBL) in inverted architecture planar perovskite solar cells with the structure of ITO/PEDOT:PSS/MAPbI3/PCBM/HBL/Ag. The deep‐lying highest occupied molecular orbital energy level of the π‐PFEs effectively blocks holes, decreasing contact recombination. It is demonstrated that the incorporation of π‐PFEs introduces a dipole moment at the PCBM/Ag interface, resulting in significant enhancement of the built‐in potential of the device. This enhancement results in an increase in the open‐circuit voltage of the device by up to 120 mV, when compared to the commonly used bathocuproine HBL. The results are confirmed both experimentally and by numerical simulation. This work demonstrates that interfacial engineering of the transport layer/contact interface by small molecule electrolytes is a promising route to suppress nonradiative recombination in perovskite devices and compensates for a nonideal energetic alignment at the hole‐transport layer/perovskite interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号