首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 degrees C as compared to the 37 degrees C control, and was only partially inhibited at 4 degrees C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine.  相似文献   

3.
Chen FY  Lee MT  Huang HW 《Biophysical journal》2003,84(6):3751-3758
Antimicrobial peptides have two binding states in a lipid bilayer, a surface state S and a pore-forming state I. The transition from the S state to the I state has a sigmoidal peptide-concentration dependence indicating cooperativity in the peptide-membrane interactions. In a previous paper, we reported the transition of alamethicin measured in three bilayer conditions. The data were explained by a free energy that took into account the membrane thinning effect induced by the peptides. In this paper, the full implications of the free energy were tested by including another type of peptide, melittin, that forms toroidal pores, instead of barrel-stave pores as in the case of alamethicin. The S-to-I transitions were measured by oriented circular dichroism. The membrane thinning effect was measured by x-ray diffraction. All data were in good agreement with the theory, indicating that the membrane thinning effect is a plausible mechanism for the peptide-induced pore formations.  相似文献   

4.
The effect of varying the amino acid concentrations of the culture medium on matrix vesicle formation was studied in primary cultures of chicken epiphyseal growth plate chondrocytes grown in Dulbecco's modified Eagle's medium (DME) supplemented with 10% fetal bovine serum (FBS). Decreasing the levels of free amino acids in the culture medium to levels of one-half, one quarter, and one eighth of the values normally present in DME caused a progressive decline in matrix vesicle (MV) formation. Increasing the level in the culture medium of those amino acids that are enriched in extracellular fluid (ECF) of growth plate cartilage significantly increased formation of matrix vesicles (MV), as assayed by the alkaline phosphatase (AP) activities present in high-speed sediments from spent culture media. However, adjusting the levels of all amino acids to match those of the ECF produced the greatest stimulation of MV formation. Of the amino acids that are notably enriched in ECF, glutamate (GLU), alanine (ALA), serine (SER), asparagine (ASN), and taurine (TAU) individually enhanced MV production, whereas proline (PRO), glycine (GLY), and aspartate (ASP) had essentially no effect. The simple combination of ECF levels of ALA and GLU resulted in a stimulation of MV formation equal to that observed when the eight aforementioned amino acids were elevated to ECF levels. Other combinations of ASP and GLY, or of TAU, SER, and ASN showed some stimulation, but at a lower level. Increasing the amino acid concentrations, alone or in combination, also increased the levels of cellular AP, and to a lesser extent cellular protein. While increases in cellular AP were generally correlated with increased formation of AP-rich MV, this was not uniformly true. These results indicate that in addition to hormones and growth factors, nutritional factors such as the levels of amino acids are also critical for normal phenotypic expression, growth, and matrix formation by epiphyseal chondrocytes.  相似文献   

5.
Fertilization and ionophore activation of the sea urchin Arbacia punctulata were inhibited in the presence of six analogs of the dye fluorescein. The concentration of any one dye needed for blockage of sperm or Ca-ionophoremediated activation in 50% of the eggs (I50) was a function of the dye's lipid solubility. Substantially higher concentrations of each dye were required to block activation by Ca-ionophore (A23187) than were needed to inhibit sperm activation. A detailed study of the action of Erythrosin B (tetraiodofluorescein) showed that its effects were readily reversible. The I50 concentration of Erythrosin B increased as temperature increased from 10 to 25°C. The kinetics of blockage indicated that Erythrosin B blocked some early step in the program of fertilization. The results suggest that these anionic dyes may inhibit fertilization by preventing successful sperm-egg fusion.  相似文献   

6.
7.
In previous reports experimental evidence has been presented indicating a possible relationship between the formation of arseno-phosphoinositides and the active transport of arsenate-phosphate in yeast cells. There is an increment in the amount of inositides in yeast cells adapted to grow in the presence of toxic concentrations of arsenate. These cells exhibit a highly reduced arsenate uptake but maintain their capacity to transport phosphate. Since, in normal (nonadapted) yeast cells, both arsenate and phosphate anions share the same transport system, a study was conducted to obtain further information about the plausible role played by the phosphoinositides in the active transport system of arsenate and their inhibition that allows the cells to grow in the presence of the toxic. Studies on [32P]orthophosphate and [74As]arsenate incorporation into phospholipids in normal and arsenate-adapted yeast show that: The 32P incorporation into phospholipids is two times larger in normal yeast as compared to arsenateadapted ones. The 32P labeling was maximum for phosphatidylinositol in normal yeasts while in the arsenate-adapted cells it was maximum for phosphatidylcholine. This incorporation was largely inhibited by arsenate in normal yeasts and minimal in the arsenate-adapted ones. Cell fractionation shows that the maximum incorporation of [32P]orthophosphate resides in the microsomal fraction, while the incorporation of [74As]arsenate resides mainly in the cell envelope fraction which incorporates 86% of the 74As label. Phosphate is capable of inhibiting the 74As-inositide complex formation and destroying the previously formed one. Yeast cells prelabeled with [2C-3H]myoinositol showed a reduced turnover rate of phosphoinositides even when transporting nontoxic amounts of arsenate. The involvement of the inositides as a regulatory mechanism in the phosphate-arsenate active transport system in yeast cells is discussed.  相似文献   

8.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

9.
The molecular mode of action of the lipopeptide SF with zwitterionic and negatively charged model membranes has been investigated with solid-state NMR, light scattering, and electron microscopy. It has been found that this acidic lipopeptide (negatively charged) induces a strong destabilization of negatively charged micrometer-scale liposomes, leading to the formation of small unilamellar vesicles of a few 10s of nanometers. This transformation is detected for very low doses of SF (Ri = 200) and is complete for Ri = 50. The phenomenon has been observed for several membrane mixtures containing phosphatidylglycerol or phosphatidylserine. The vesicularization is not observed when the lipid negative charges are neutralized and a cholesterol-like effect is then evidenced, i.e., increase of gel membrane dynamics and decrease of fluid membrane microfluidity. The mechanism for small vesicle formation thus appears to be linked to severe changes in membrane curvature and could be described by a two-step action: 1), peptide insertion into membranes because of favorable van der Waals forces between the rather rigid cyclic and lipophilic part of SF and lipid chains and 2), electrostatic repulsion between like charges borne by lipid headgroups and the negatively charged SF amino acids. This might provide the basis for a novel mode of action of negatively charged lipopeptides.  相似文献   

10.
Transforming growth factor-beta (TGF beta) serves an important role in extracellular matrix formation by stimulating the production of numerous extracellular matrix proteins by connective tissue cells and by osteoblasts or bone-forming cells. TGF beta has been shown to stimulate alkaline phosphatase (ALPase) activity in the rat osteoblast-like osteosarcoma cell line ROS 17/2.8. Previous studies have shown that this enzyme is elevated during calcification of bone and that it is enriched in matrix vesicles, an extracellular organelle associated with initial hydroxyapatite formation. To test the hypothesis that TGF beta plays a role in regulating mineral deposition in the matrix, the effects of TGF beta on ALPase and phospholipase A2, two enzymes associated with mineralization, were examined. ROS 17/2.8 cells were cultured at high and low density with recombinant human TGF beta (0.1-10 ng/ml) to examine the influence of cell maturation on response to TGF beta. Maximal stimulation of ALPase activity in the low density cultures was seen at 5 ng/ml; in high-density cultures, there was further stimulation at 10 ng/ml. There was a dose-dependent increase in ALPase activity seen in the matrix vesicles and plasma membranes in both types of cultures. Matrix vesicle ALPase exhibited a greater response to factor than did the plasma membrane enzyme. However, in low-density cultures, the two membrane fractions exhibited a parallel response with greatest activity consistently in the matrix vesicles. There was a dose-dependent increase in phospholipase A2-specific activity in the plasma membranes and matrix vesicles of both high- and low-density cultures. In agreement with previous studies, TGF beta inhibited cellular proliferation 50%. The results show that addition of TGF beta stimulates the activity of enzymes associated with calcification. The effect of TGF beta is dependent on the stage of maturation of the cell. This study indicates that TGF beta may play an important role in induced bone formation, calcification, and fracture repair in addition to its role in promoting chondrogenesis.  相似文献   

11.
Su SF  Amidon GL  Lee HJ 《Life sciences》2002,72(1):35-47
Our recent work on the intestinal metabolism and absorption of cholecystokinin analogs, sulfated C-terminal octapeptide (CCK8; Asp-Tyr(SO(3)H)-Met-Gly-Trp-Met-Asp-Phe(NH(2)) = DY(SO(3)H)MGWMDF(NH(2))) and tetrapeptide (CCK4; Trp-Met-Asp-Phe(NH(2)) = WMDF(NH(2))), was extended to investigate the degradative process of these analogs using rabbit jejunum brush-border membrane vesicles and to find a better enzyme-inhibitor system for intestinal absorption of peptide drugs. Various enzyme inhibitors and a lower pH buffer were applied to discover the major enzyme(s) involved in each process. Metabolic pathways showing degradative processes were proposed for both analogs. The major cleavage site occurs at the W(1)-M(2) for CCK4. At least three metabolic pathways occur independently for CCK8 and appear at peptides bonds between G(4)-W(5), M(6)-D(7), and D(7)-F(NH(2))(8). Many different enzymes of aminopeptidase, endopeptidase, angiotensin-converting enzyme, metalloenzyme, and others were involved in each process. Identification of more specific yet safe enzyme inhibitors and co-administration of various these inhibitors may lead to further enhancement in intestinal peptide absorption when administered orally.  相似文献   

12.
Evidence for a metalloprotein structure of plasma membrane 5'-nucleotidase   总被引:1,自引:0,他引:1  
J Harb  K Meflah  Y Duflos  S Bernard 《FEBS letters》1984,171(2):215-220
To point out the metalloprotein structure of bovine liver plasma membrane 5'-nucleotidase, we studied the inhibition mechanism of the purified enzyme by EDTA: this apparently non-competitive inhibition seems to be dependent on EDTA concentration, pH, temperature and incubation time. When the restoration of activity was assayed by addition of divalent cations or by gel filtration, the inhibition became progressively irreversible with time. Incubation of the enzyme with [14C]EDTA allowed us to observe, after gel filtration as well as after sucrose gradient ultracentrifugation, that the chelating agent is bound to 5'-nucleotidase.  相似文献   

13.
Self-reproduction and the ability to regulate their composition are two essential properties of terrestrial biotic systems. The identification of non-living systems that possess these properties can therefore contribute not only to our understanding of their functioning but also hint at possible prebiotic processes that led to the emergence of life. Growing lipid vesicles have been previously established as having the capacity to self-reproduce. Here it is demonstrated that vesicle self-reproduction can occur only at selected values of vesicle properties. We treat as an example a simple vesicle with membrane elastic properties defined by a membrane bending modulus and spontaneous curvature C0, whose volume variation depends on the membrane hydraulic permeability Lp and whose membrane area doubles in time Td. Vesicle self-reproduction is described as a process in which a growing vesicle first transforms its shape from a sphere into a budded shape of two spheres connected by a narrow neck, and then splits into two spherical daughter vesicles. We show that budded vesicle shapes can be reached only under the condition that TdLpC041.85. Thus, in a growing vesicle population containing vesicles of different composition, only the vesicles for which this condition is fulfilled can increase their number in a self-reproducing manner. The obtained results also suggest that at times much longer than Td the number of vesicles with their properties near the edge in the system parameter space defined by the minimum value of the product TdLpC04, will greatly exceed the number of any other vesicles.  相似文献   

14.
It is postulated that the increase in H2O2 formation following phagocytosis in guinea pig polymorphonuclear leukocytes is due to the activation of a plasma-membrane-located NAD(P)H oxidase. The cyanide-resistant oxidase activity of intact leukocytes was markedly stimulated when the leukocytes were suspended in a hypotonic medium. Hydrogen peroxide was the principal product of the oxidase reaction. Evidence that the oxidase activity was located on the outside surface of the plasma membrane was the finding that added NAD(P)H was rapidly oxidized and the plasma membrane was impermeable to NADH or NADPH. Further evidence was the marked inhibition of the oxidase by p-CMB which also did not penetrate the plasma membrane. The oxidase was also inhibited on disruption of the plasma membrane. In addition, the enhanced oxidase activity under hypotonic conditions decreased to normal values when the medium was made isotonic and suggested that a reversible conformational change in the plasma membrane was responsible for the activation of oxidase activities.  相似文献   

15.
Exchange and net mass efflux of cholesterol were investigated in [3H]cholesterol-labeled or cholesteryl ester-loaded murine peritoneal macrophages, respectively. Macrophages were subjected to mild proteolysis prior to measurements of mass efflux or exchange to assess whether plasma membrane proteins participated in either process. Cholesterol exchange and mass efflux were inhibited up to 70% following trypsinization. The inhibitory effect was reversible as cells regained normal efflux and exchange 6-8 hr following treatment. Incubation of trypsinized cells with cycloheximide prevented recovery, indicating that protein synthesis was necessary for restoration of normal cholesterol efflux. Studies with peptide and nonpeptide inhibitors of proteolysis suggested that active catalytic activity of trypsin was necessary for the inhibitory effect to be expressed. The degree of inhibition for both cholesterol exchange and mass efflux was dependent in a quantitatively similar manner on the time of incubation and the concentration of trypsin, suggesting that the mechanism of cholesterol exchange and mass efflux were similar at the level of the plasma membrane. Two other serine-proteases, thrombin and elastase, were also capable of inhibiting cholesterol removal in a similar manner. No cell death was observed by altered morphology, detachment, changes in DNA or protein content, or trypan blue exclusion even under the most severe proteolytic conditions. These studies suggest that protease-sensitive plasma membrane proteins play a role in cholesterol efflux in macrophages.  相似文献   

16.
Miller SI  Bader M  Guina T 《Cell》2003,115(1):2-3
Gram-negative bacterial vesicle formation is a mechanism for specific secretion and transfer of a protein toxin to animals. This discovery should stimulate work on the mechanism of protein sorting into vesicles and the role of vesicles in bacterial pathogenesis.  相似文献   

17.
We obtained vesicles from purple membrane of Halobacterium halobium at different suspension compositions (pH, electrolytes, buffers), following the procedure of Kouyama et al. (1994) (J. Mol. Biol. 236:990-994). The vesicles contained bacteriorhodopsin (bR) and halolipid, and spontaneously formed during incubation of purple membrane suspension in the presence of detergent octylthioglucoside (OTG) if the protein:OTG ratio was 2:1 by weight. The size distribution of the vesicles was precisely determined by electron cryomicroscopy and was found to be almost independent on the incubation conditions (mean radius 17.9-19 nm). The size distribution in a given sample was close to the normal one, with a standard deviation of approximately +/- 1 nm. During dialysis for removal of the detergent, the vesicles diminished their radius by 2-2.5 nm. The results allow us to conclude that the driving force for the formation of bR vesicles is the preferential incorporation of OTG molecules in the cytoplasmic side of the membrane (with possible preferential delipidation of the extracellular side), which creates spontaneous curvature of the purple membrane. From the size distribution of the vesicles, we calculated the elasticity bending constant, K(B) approximately 9 x 10(-20) J, of the vesicle wall. The results provide some insight into the possible formation mechanisms of spherical assembles in living organisms. The conditions for vesicle formation and the mechanical properties of the vesicles could also be of interest with respect to the potential technological application of the bR vesicles as light energy converters.  相似文献   

18.
About 5% of the total adenylate kinase activity in the rat forebrain was found in a subcellular fraction enriched in synaptic plasma membrane (SPM). The enzyme remained membrane bound after washing by 1M potassium acetate. It was resistant to trypsin digestion under conditions which destroyed 90% of acetylcholinesterase activity. The SPM enzyme was solubilized by 0.25% Triton X-100 resulting in a 4-fold increase in activity. Similar effects were observed when SPM was treated with phospholipases, melittin and trifluoperazine. These results suggest the occurrence of an adenylate kinase closely associated with SPM the activity of which can only be fully expressed by disturbances to the hydrophobic lipid bilayer. The enzyme can be seen as strategically located to play a role in regenerating ATP required for the manifold activities of the synaptic membrane.  相似文献   

19.
In this report we describe the presence of interleukin-1 activity in medium conditioned by bovine articular cartilage. Preparations partially purified by Sephacryl S200 chromatography (Mr 18000-25000) stimulate murine thymocyte proliferation in the lymphocyte activation factor assay. Furthermore, the factor(s) activate cartilage tissue to secrete a protease which is essential for the activity of purified synovial collagenase. We also demonstrate the presence of mRNA coding for IL-1 alpha and beta in human articular chondrocytes and conclude that the human monocytic and chondrocytic mRNAs are identical. Our results demonstrating cartilage expression of IL-1 genes suggest the possibility of an autocrine mechanism whereby chondrocyte production of matrix degrading proteases is initiated by chondrocyte derived IL-1.  相似文献   

20.
Plasma membrane vesicles of rat myometrium were prepared in media containing 240 mM sucrose. The vesicles were exposed to isotonic, hypertonic, and hypotonic sucrose concentrations, fixed, sectioned, and studied using the electron microscope. The vesicles fixed in isotonic media were circular in appearance. Vesicles fixed in hypertonic media were distorted and showed a reduced volume to surface ratio consistent with the hypothesis that greater than 80% of the vesicles were osmotically active to sucrose. Cationized ferritin binding studies and Ca binding and release studies were also consistent with this finding. Exposure to hypotonic media also yielded membranes with distorted profiles indicating that they had been ruptured. [3H]Sucrose trapping experiments revealed that the vesicles had an internal volume of 1.20-1.44 mL/g protein. Hypotonic shock treatment reduced this intravesicular volume to 0.20-0.28 mL/g protein. The hypotonic shock treatment also led to enhanced galactose oxidase catalyzed Na3B3H4 labelling of the membranes and to increased K+-activated ouabain-sensitive p-nitrophenyl phosphatase activity. The enhancement was the same (55 +/- 10%) in the various membrane preparations for both the parameters. The data are interpreted to conclude that the rat myometrium plasma membrane vesicles consisted of 20% broken vesicles and equal proportions of intact vesicles of inside-out and rightside-out orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号