首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thraustochytrids, a group of osmoheterotrophic marine protists, have recently gained increased attention owing to their spectacular biotechnological potentials. They possess enormous capability of producing omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and several other bioactive metabolites, known to have nutritional implications in human health. They have emerged lately as an efficient economic alternative compared with other fish and algal oil sources by virtue of their simpler PUFA profiles and cost-effective culture conditions. This review is an attempt to summarize the ecological significance of thraustochytrids with an emphasis on their cultured and uncultured diversity from various marine habitats accounted during the last few decades. Moreover, improved technologies such as media optimization in conjugation with metabolic engineering, adopted for biotechnological advancement of ω-3 products of thraustochytrids are highlighted with particular concern on the respective fatty acid biosynthetic pathways. One of the future prospects focuses on utilization of thraustochytrids for biodiesel production owing to their tremendous potentiality of yielding low carbon monounsaturated fatty acids (LC-MUFAs). However, there is utmost need of in-depth diversity assessments from various oceanic ecosystems in order to gain insight on potential thraustochytrids for ameliorated employment toward biotechnological applications.  相似文献   

2.
破囊壶菌由于具备生产多种高值天然活性物质的能力,如二十碳五烯酸(eicosapentaenoic acid, EPA)、二十二碳六烯酸(docosahexaenoic acid, DHA)、角鲨烯和类胡萝卜素等,目前已被视为商业脂质生产的优质来源。本文首先对破囊壶菌的生态作用和生物技术价值进行介绍,并概述了脂肪酸的两条生物合成途径;其次重点阐述了NaCl、温度、溶氧和pH这4种环境胁迫因子对破囊壶菌生长、脂质积累、脂肪酸组成和DHA生产的影响;随后总结了当前利用环境胁迫因子的渗透调节策略、分段发酵策略和缓解氧化应激策略提升破囊壶菌DHA生物合成能力的研究现状;最后指出了破囊壶菌在环境胁迫的分子调控机制、分段式发酵策略、菌株进化及代谢工程等方面存在的问题,并对如何改进这些问题以及未来可能的发展方向进行了展望。该综述旨在为破囊壶菌实现高效工业化生产DHA提供有效的参考。  相似文献   

3.
The Biotechnological Potential of Thraustochytrids   总被引:4,自引:0,他引:4  
Thraustochytrids are common marine microheterotrophs, taxonomically aligned with heterokont algae. Recent studies have shown that some thraustochytrid strains can be cultured to produce high biomass, containing substantial amounts of lipid rich in polyunsaturated fatty acid (PUFA). It is also evident that cell yield and PUFA production by some thraustochytrid strains can be varied by manipulation of physical and chemical parameters of the culture. At present, fish oils and cultured phototrophic microalgae are the main commercial sources of PUFA. The possible decline of commercial fish stocks and the relatively complex technology required to commercially produce microalgae have prompted research into possible alternative sources of PUFA. The culture of thraustochytrids and other PUFA-producing microheterotrophs is seen as one such alternative. Indeed, several thraustochytrid-based products are already on the market, and research into further applications is continuing. Many fish and microalgal oils currently available have relatively complex PUFA profiles, increasing the cost of preparation of high-purity PUFA oils. In contrast, some of the thraustochytrids examined to date have simpler PUFA profiles. If these or other strains can be grown in sufficient quantities and at an appropriate cost, the use of thraustochytrid-derived oils may decrease the high expense currently involved with producing high-purity microbial oils. As more is learned about the health and nutritional benefits of PUFA, demand for PUFA-rich products is expected to increase. Results to date suggest that thraustochytrids could form an important part in the supply of such products. Received February 17, 1999; accepted June 25, 1999  相似文献   

4.
Thraustochytrids, the heterotrophic, marine, straminipilan protists, are now established candidates for commercial production of the omega-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), that is important in human health and aquaculture. Extensive screening of cultures from a variety of habitats has yielded strains that produce at least 50% of their biomass as lipids, and DHA comprising at least 25% of the total fatty acids, with a yield of at least 5 g L−1. Most of the lipids occur as triacylglycerols and a lesser amount as phospholipids. Numerous studies have been carried out on salinity, pH, temperature, and media optimization for DHA production. Commercial production is based on a fed batch method, using high C/N ratio that favors lipid accumulation. Schizochytrium DHA is now commercially available as nutritional supplements for adults and as feeds to enhance DHA levels in larvae of aquaculture animals. Thraustochytrids are emerging as a potential source of other PUFAs such as arachidonic acid and oils with a suite of PUFA profiles that can have specific uses. They are potential sources of asataxanthin and carotenoid pigments, as well as other lipids. Genes of the conventional fatty acid synthesis and the polyketide-like PUFA synthesis pathways of thraustochytrids are attracting attention for production of recombinant PUFA-containing plant oils. Future studies on the basic biology of these organisms, including biodiversity, environmental adaptations, and genome research are likely to point out directions for biotechnology explorations. Potential areas include enzymes, polysaccharides, and secondary metabolites.  相似文献   

5.
Schizochytrium is a marine microalga that requires high concentrations of sea salt for growth, although problems arise with significant amounts of chloride ions in the culture medium, which corrodes the fermenters. In this work, we evaluated that cell growth and docosahexaenoic acid (DHA) production can be improved when using 1 % (w/v) sodium sulfate instead of 2 % (w/v) sea salt in the culture medium for Schizochytrium sp. S056. In practice, the use of sodium sulfate as the sodium salt led to chloride ion levels in the medium that can be completely removed, thus avoiding fermenter corrosion during Schizochytrium sp. S056 growth, reducing cost and increasing DHA production, and simplifying the disposal of fermentation wastewater. Additionally, we demonstrated that the osmolality of growth media did not play a crucial role in the production of DHA. These findings may be significantly important to companies involved in production of PUFAs by marine microbes.  相似文献   

6.
Thraustochytrids are known to synthesize PUFAs such as docosahexaenoic acid (DHA). Accumulating evidence suggests the presence of two synthetic pathways of PUFAs in thraustochytrids: the polyketide synthase-like (PUFA synthase) and desaturase/elongase (standard) pathways. It remains unclear whether the latter pathway functions in thraustochytrids. In this study, we report that the standard pathway produces PUFA in Thraustochytrium aureum ATCC 34304. We isolated a gene encoding a putative Δ12-fatty acid desaturase (TauΔ12des) from T. aureum. Yeasts transformed with the tauΔ12des converted endogenous oleic acid (OA) into linoleic acid (LA). The disruption of the tauΔ12des in T. aureum by homologous recombination resulted in the accumulation of OA and a decrease in the levels of LA and its downstream PUFAs. However, the DHA content was increased slightly in tauΔ12des-disruption mutants, suggesting that DHA is primarily produced in T. aureum via the PUFA synthase pathway. The transformation of the tauΔ12des-disruption mutants with a tauΔ12des expression cassette restored the wild-type fatty acid profiles. These data clearly indicate that TauΔ12des functions as Δ12-fatty acid desaturase in the standard pathway of T. aureum and demonstrate that this thraustochytrid produces PUFAs via both the PUFA synthase and the standard pathways.  相似文献   

7.
Heterotrophic growth of thraustochytrids has potential in coproducing biodiesel for transportation, as well as producing a feedstock for omega-3 long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA), especially docosahexaenoic acid (DHA) for use in nutraceuticals. In this study, we compared eight new endemic Australian thraustochytrid strains from the genera Aurantiochytrium, Schizochytrium, Thraustochytrium, and Ulkenia for the synthesis of exopolysaccharide (EPS), in addition to biodiesel and LC-PUFA. Aurantiochytrium sp. strains readily utilized glucose for biomass production, and increasing glucose from 2 to 4 % w/v of the culture medium resulted in increased biomass yield by an average factor of 1.7. Ulkenia sp. strain TC 010 and Thraustochytrium sp. strain TC 033 did not utilize glucose, while Schizochytrium sp. strain TC 002 utilized less than half the glucose available by day 14, and Thraustochytrium sp. strain TC 004 utilized glucose at 4 % w/v but not 2 % w/v of the culture suggesting a threshold requirement between these values. Across all strains, increasing glucose from 2 to 4 % w/v of the culture medium resulted in increased total fatty acid methyl ester content by an average factor of 1.9. Despite an increasing literature demonstrating the capacity of thraustochytrids for DHA synthesis, the production of EPS from these organisms is not well documented. A broad range of EPS yields was observed. The maximum yield of EPS was observed for Schizochytrium sp. strain TC 002 (299 mg/L). High biomass-producing strains that also have high lipid and high EPS yield may be better candidates for commercial production of biofuels and other coproducts.  相似文献   

8.
Jang HD  Lin YY  Yang SS 《Bioresource technology》2005,96(15):1633-1644
To improve the polyunsaturated fatty acid (PUFA) production by Mortierella, culture media and conditions were investigated. M. alpina ATCC 32222 had the highest yield of arachidonic acid, gamma-linolenic acid and linoleic acid among 11 test microbes. Soluble starch at 10% and the mixture of KNO3 and yeast extract at 2:1 (w/w) was the best carbon and nitrogen sources for arachidonic acid and total PUFAs production, respectively. The optimal C/N ratio ranged from 5.1 to 9.0. Each gram of carbon produced 17.4 mg of linoleic acid, 17.0 mg of gamma-linolenic acid, 103.0 mg of arachidonic acid and 194.2 mg of total PUFAs at 20 degrees C, while it yielded 21.4 mg of linoleic acid, 25.6 mg of gamma-linolenic acid, 2.6 mg of gamma-linolenic acid, 110.3 mg of arachidonic acid, 4.3 mg of eicosapentaenoic acid and 218.4 mg of total PUFAs at 12 degrees C. A high degree of unsaturation was found at low temperature incubation. Linseed oil supplementation (1%, w/v) increased the PUFAs production and each gram of carbon produced 403.4 mg of alpha-linolenic acid, 123.1 mg of arachidonic acid, 33.6 mg of eicosapentaenoic acid, 1.68 mg of docosahexaenoic acid and 943.2 mg of total PUFAs. From the optimization of culture media and conditions, PUFAs production increased from 30% to 5 times that was optimal for practical use.  相似文献   

9.
Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ~79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.  相似文献   

10.
Thraustochytrids are ubiquitous marine osmo-heterotrophic fungi-like microorganisms with only about 40 identified species till now. In this study, a total of 60 thraustochytrid strains were isolated from marine coastal habitats. Analysis of 18S rRNA gene sequences revealed that they belonged to three genera, i.e., Schizochytrium, Aurantiochytrium, and Thraustochytrium. All of the isolates were found to show considerable cellulolytic and lipolytic activities. Strains of Aurantiochytrium sp. and Thraustochytrium sp. were found to produce the highest levels of extracellular polysaccharides (EPS), which reached 345 μg ml?1 in the growth media. Fourier transform infrared (FTIR) spectra of the EPS samples derived from two thraustochytrids (PKU#Sed1 and #SW1) displayed peaks for carbohydrates, proteins, lipids, uronic acids, and nucleic acids. Fatty acid profiles of four thraustochytrids comprised of palmitic acid (C16:0) and docosahexaenoic acid (DHA) as their major constituents. Schizochytrium sp. demonstrated the highest DHA production at 44 % of total fatty acids (TFA) with biomass and DHA yield of 7.1 and 1.6 g l?1, respectively, on the fourth day of growth. All the four isolates exhibited considerable production of palmitic acid (16:0) in their fatty acid profiles ranging from 35 to 50 % TFA. This is the first report on extracellular enzymes, EPS, and DHA production from thraustochytrids isolated from the coastal habitats of China.  相似文献   

11.
The medium chain length polyhydroxyalkanoates (MCL-PHA) have attracted much attention from academic and industrial communities for their interesting applications in medical field. The aim of this study was to screen high MCL-PHA-producing fluorescent pseudomonads, and to compare the effect of osmotic stress generated by NaCl (ionic) and polyethylene glycol (PEG, non-ionic inert polymer) on PHA production. A total of 50 fluorescent pseudomonads isolated from rhizospheric soil were screened for PHA production by Sudan Black staining. Out of all the PHA-producing isolates only five were MCL-PHA producers as detected by MCL-PCR. Isolate Bar1 identified as Pseudomonas fluorescens by 16S rRNA gene sequencing was selected for further analysis due to its high MCL-PHA production ability. The iso-osmotic stress generated by NaCl and PEG-6000 showed 5.75- and 3.19-fold enhanced production of PHA at ?2 bar osmotic potential, over control (0 bar), respectively. There was 1.8-fold enhanced production of PHA at ?2 bar osmotic stress induced by NaCl over PEG. PEG reduces availability of water to microorganisms without reducing exogenously provided nutrients which appear to be responsible for its down performance over NaCl. The FTIR analysis of PHA sample purified from cells showed strong marker bands near 1742, 2870, 1170, 1099, and 2926 cm?1, corresponding to MCL-PHA. The study reported that supplementation of NaCl (electrolyte) in growth media enhances the production of MCL-PHA which can be very useful for its industrial production.  相似文献   

12.
Schizochytrium sp. is a kind of marine microalgae with great potential as promising sustainable source of polyunsaturated fatty acids (PUFAs). Polyketide synthase-like (PKS synthase) is supposed to be one of the main ways to synthesize PUFAs in Schizochytrium sp. In order to study the exact relationship between PKS and PUFA biosynthesis, chain length factor (CLF) and dehydrogenase (DH) were cloned from the PKS gene cluster in Schizochytrium sp., then disrupted by homologous recombination. The results showed that DH- and CLF-disrupted strains had significant decreases (65.85 and 84.24%) in PUFA yield, while the saturated fatty acid (SFA) proportion in lipids was slightly increased. Meanwhile, the disruption of CLF decreased the C-22 PUFA proportion by 57.51% without effect on C-20 PUFA accumulation while DH-disrupted mutant decreased the production of each PUFA. Combined with analysis of protein prediction, it indicated that CLF gene exerted an enormous function on the carbon chain elongation in PUFA synthesis, especially for the final elongation from C-20 to C-22 PUFAs. Metabolomics analysis also suggested that the disruption of both genes resulted in the decrease of PUFAs but increase of SFAs, thus weakening glycolysis and tricarboxylic acid (TCA) cycle pathways. This study offers a broad new vision to research the mechanism of PUFA synthesis in Schizochytrium sp.  相似文献   

13.
Organic nutrients play a central role during Panax ginseng adventitious root culture in bioreactor systems. To understand how the nutrient elements were uptaken during the adventitious root growth as well as the production of biomass and natural ginsenosides, a biotechnological approach to identifying the nutritional physiology of ginseng in a commercial‐scale bioreactor was necessary. Normal MS medium nutrient in the bioreactor culture of adventitious roots resulted in slow growth, low biomass, and Rg and Rb ginsenoside contents. When the ginsenoside production increased to higher levels, a group of regulatory nutritional elements that have the potential to interact with biomass was identified. The effects of the salt strength of the medium, of macroelements, metal elements, the ammonia/nitrate ratio, sucrose concentration, and osmotic agents on the growth, the formation of biomass and the production of ginsenosides from adventitious roots were investigated. Appropriate conditions allowed for a maximum ginsenoide production of up to 12.42 [mg/g DW] to be obtained after 5 weeks of culture. The results demonstrated that the key organic nutrients can be regulated to improve the biomass and growth, and increase the ginsenoside yield in bioreactor cultures of P. ginseng adventitious roots.  相似文献   

14.
In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg2+ to in vitro assays facilitates appearance of radiolabel from 14C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase.  相似文献   

15.
In recent years, global climate change has been shown to detrimentally affect many biological and environmental factors, including those of marine ecosystems. In particular, global climate change has been linked to an increase in atmospheric carbon dioxide, UV irradiation, and ocean temperatures, resulting in decreased marine phytoplankton growth and reduced synthesis of omega-3 polyunsaturated fatty acids (PUFAs). Marine phytoplankton are the primary producers of omega-3 PUFAs, which are essential nutrients for normal human growth and development and have many beneficial effects on human health. Thus, these detrimental effects of climate change on the oceans may reduce the availability of omega-3 PUFAs in our diets, exacerbating the modern deficiency of omega-3 PUFAs and imbalance of the tissue omega-6/omega-3 PUFA ratio, which have been associated with an increased risk for cardiovascular disease, cancer, diabetes, and neurodegenerative disease. This article provides new insight into the relationship between global climate change and human health by identifying omega-3 PUFA availability as a potentially important link, and proposes a biotechnological strategy for addressing the potential shortage of omega-3 PUFAs in human diets resulting from global climate change.  相似文献   

16.
The production of carotenoids from Haloferax alexandrinus strain TM(T) was investigated at various concentrations of NaCl (10-25%) in culture media under non-aseptic conditions. PCR and dot blot hybridization assays were employed to monitor the growth of Hfx. alexandrinus in the culture under aseptic and non-aseptic conditions. The amplified PCR products of 16S rDNA from Hfx. alexandrinus grown under aseptic conditions were used as specific probes, which bound with amplified PCR products of 16S rDNA dots from both aseptic and non-aseptic conditions (20-25% NaCl). The results indicated that contamination of the culture was precluded at high NaCl concentrations (20-25%). Therefore, it is not necessary to perform asepsis during the biotechnological processes of carotenoid production by Hfx. alexandrinus. A 1-l-scale cultivation of the cells in flask cultures under non-aseptic conditions produced 3.12+/-0.5 g dry weight, 6.34+/-2.5 mg total carotenoids and 2,156.67+/-0.1 microg canthaxanthin. Further experiments in a batch fermenter, under non-aseptic conditions, also demonstrated increases in the biomass concentration and carotenoid production. When grown in a standard growth medium at 25% NaCl, the cells of Hfx. alexandrinus lysed spontaneously in fresh water and hence carotenoids could be extracted directly from the cells without any mechanical disintegration. These results demonstrate the feasibility and simplicity of commercial production of carotenoids using Hfx. alexandrinus.  相似文献   

17.
18.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

19.
Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C(16:0)), n - 6 docosapentaenoic acid (DPA) (C(22:5)(n) (- 6)), and docosahexaenoic acid (DHA) (C(22:6)(n) (- 3)), with eicosapentaenoic acid (EPA) (C(20:5)(n) (- 3)) and arachidonic acid (AA) (C(20:4)(n) (- 6)) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C(20:4)(n) (- 3)) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C(20:3)(n) (- 6)) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.  相似文献   

20.
Thraustochytrids are large-celled marine heterokonts and classified as oleaginous microorganisms due to their production of docosahexaenoic (DHA) and eicosapentaenoic (EPA) ω-3-fatty acids. The applications of microbial DHA and EPA for human health are rapidly expanding, and a large number of clinical trials have been carried out to verify their efficacy. The development of refined isolation and identification techniques is important for the cultivation of thraustochytrids. With a high proportion of lipid biomass, thraustochytrids are also amenable to various production strategies which increase omega-3 oil output. Modifications to the existing lipid extraction methods and utilisation of sophisticated analytical instruments have increased extraction yields of DHA and EPA. Other metabolites such as enzymes, carotenoids and extracellular polysaccharides can also be obtained from these marine protists. Approaches such as the exploration for more diverse isolates having fast growth rates, metabolic engineering including gene cloning, and growing thraustochytrids on alternate low cost carbon source, will further enhance the biotechnological potential of thraustochytrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号