首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm''s effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo.  相似文献   

2.
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.  相似文献   

3.
Free-living Rhizobium (according to Bergey's Manual of Systematic Bacteriology, [1984, The Williams & Wilkins Co., Baltimore], Bradyrhizobium) japonicum was found to release a peptide into the nutrient media. Soybean nodules contained this peptide and exuded it into the soil. The name “rhizobin A” is suggested for this peptide. Nodules also contained another peptide, rhizobin B, as well as an unidentified, ninhydrin-positive compound, rhizobin C. The three peptides were confined to the free-amino-acid pool of the soluble fraction and eluted consecutively from a cation-exchange column. Rhizobin A was isolated in a highly purified form; its molecular mass was approximately 1,600 daltons as determined by Sephadex gel filtration and mass spectrometry. The amino-acid composition could be determined only approximately, because a long time was necessary for acid hydrolysis, possibly due to unusual linkages. The rhizobin concentration in soybean nodules continually increased during 50 days of growth, from 2 to approximately 400 μg/g (fresh weight). When combined nitrogen was added to nodulated soybean and subsequently removed, nitrogenase activity, nodulation, and nodule growth first decreased and then recovered. The relative amount of rhizobin A followed a similar pattern. Rhizobins were not detected in the roots, stems, and leaves of nodulated soybean plants. They were present in Lupinus nodules, but absent in alder nodules.  相似文献   

4.
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure.  相似文献   

5.
Since Bechara et al. pioneered its development, the Iowa Gambling Task (IGT) has been widely applied to elucidate decision behavior and medial prefrontal function. Although most decision makers can hunch the final benefits of IGT, ventromedial prefrontal lesions generate a myopic choice pattern. Additionally, the Iowa group developed a revised IGT (inverted IGT, iIGT) to confirm the IGT validity. Each iIGT trial was generated from the trial of IGT by multiplying by a “−” to create an inverted monetary value. Thus, bad decks A and B in the IGT become good decks iA and iB in the iIGT; additionally, good decks C and D in the IGT become bad decks iC and iD in the iIGT. Furthermore, IGT possessed mostly the gain trials, and iIGT possessed mainly the loss trials. Therefore, IGT is a frequent-gain–based task, and iIGT is a frequent-loss–based task. However, a growing number of IGT-related studies have identified confounding factors in IGT (i.e., gain-loss frequency), which are demonstrated by the prominent deck B phenomenon (PDB phenomenon). Nevertheless, the mirrored PDB phenomenon and guiding power of gain-loss frequency in iIGT have seldom been reexamined. This experimental finding supports the prediction based on gain-loss frequency. This study identifies the mirrored PDB phenomenon. Frequent small losses override occasional large gains in deck iB of the iIGT. Learning curve analysis generally supports the phenomenon based on gain-loss frequency rather than final outcome. In terms of iIGT and simple versions of iIGT, results of this study demonstrate that high-frequency loss, rather than a satisfactory final outcome, dominates the preference of normal decision makers under uncertainty. Furthermore, normal subjects prefer “no immediate punishment” rather than “final reward” under uncertainty.  相似文献   

6.
Methyl jasmonate and transpiration in barley   总被引:7,自引:1,他引:6       下载免费PDF全文
Horton RF 《Plant physiology》1991,96(4):1376-1378
Transpirational water loss from barley (Hordeum vulgare L. var Morrison) leaves was determined gravimetrically. In contrast to the known effects of other growth regulating compounds, it is shown that methyl jasmonate—used either as an airborne vapor or in the transpiration stream—is not acting as a primary short-term modulator of stomatal behavior in this species.  相似文献   

7.
A simple kinetic model is presented to explain the gating of a HERG-like voltage-gated K+ conductance described in the accompanying paper (Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:781–794). The model proposes two kinetically distinct closing pathways, a rapid one favored by depolarization (deactivation) and a slow one favored by hyperpolarization (inactivation). The overlap of these two processes leads to a window current between −50 and +20 mV with a peak at −36 mV of ∼12% maximal conductance. The near absence of depolarization-activated outward current in microglia, compared with HERG channels expressed in oocytes or cardiac myocytes, can be explained if activation is shifted negatively in microglia. As seen with experimental data, availability predicted by the model was more steeply voltage dependent, and the midpoint more positive when determined by making the holding potential progressively more positive at intervals of 20 s (starting at −120 mV), rather than progressively more negative (starting at 40 mV). In the model, this hysteresis was generated by postulating slow and ultra-slow components of inactivation. The ultra-slow component takes minutes to equilibrate at −40 mV but is steeply voltage dependent, leading to protocol-dependent modulation of the HERG-like current. The data suggest that “deactivation” and “inactivation” are coupled through the open state. This is particularly evident in isotonic Cs+, where a delayed and transient outward current develops on depolarization with a decay time constant more voltage dependent and slower than the deactivation process observed at the same potential after a brief hyperpolarization.  相似文献   

8.
The aim of this meta-analysis was to explore the effects of plyometric jump training (PJT) on body composition parameters among males. Relevant articles were searched in the electronic databases PubMed, MEDLINE, WOS, and SCOPUS, using the key words “ballistic”, “complex”, “explosive”, “force-velocity”, “plyometric”, “stretch-shortening cycle”, “jump”, “training”, and “body composition”. We included randomized controlled trials (RCTs) that investigating the effects of PJT in healthy male’s body composition (e.g., muscle mass; body fat), irrespective of age. From database searching 21 RCTs were included (separate experimental groups = 28; pooled number of participants = 594). Compared to control, PJT produced significant increases in total leg muscle volume (small ES = 0.55, p = 0.009), thigh muscle volume (small ES = 0.38, p = 0.043), thigh girth (large ES = 1.78, p = 0.011), calf girth (large ES = 1.89, p = 0.022), and muscle pennation angle (small ES = 0.53, p = 0.040). However, we did not find significant difference between PJT and control for muscle cross-sectional area, body fat, and skinfold thickness. Heterogeneity remained low-to-moderate for most analyses, and using the Egger’s test publication bias was not found in any of the analyses (p = 0.300–0.900). No injuries were reported among the included studies. PJT seems to be an effective and safe mode of exercise for increasing leg muscle volume, thigh muscle volume, thigh and calf girth, and muscle pennation angle. Therefore, PJT may be effective to improve muscle size and architecture, with potential implications in several clinical and sport-related contexts.  相似文献   

9.
Stomatal pores, surrounded by the pairs of guard cells, regulate plant gas exchange. Correct stomatal regulation is crucial for plant survival under various stress conditions. We have recently utilized the air pollutant ozone (O3) to study stomatal signaling and showed that application of O3 induces rapid decrease in stomatal conductance. Here we have addressed the recovery of stomatal conductance and show that after exposures of plants to high O3 pulses stomatal conductance recovered faster, reaching higher, “overshooting” values than were the pre-exposure values. We propose the hypothetical mechanism for this phenomenon and discuss it in the frames of current stomatal signaling models.Key words: ozone, stomata, signaling, Arabidopsis, overshooting, guard cells, stressRapid progress in understanding structural and molecular mechanisms of the core abscisic acid (ABA) signaling pathway and subsequent stomatal closure (reviewed in ref. 1) has been achieved by using a variety of mostly in vitro technologies and approaches. Data on early induction of stomatal response by a brief ABA pulse in vivo is almost absent, largely due to difficulties in rapid removal of ABA from intact guard cells. Application of O3, an air pollutant efficiently utilized to study stomatal signaling,24 lacks this disadvantage and allows monitoring stomatal responses to brief, clean-cut, strictly dosed pulses of this powerful oxidant in planta. Application of O3 for 1 min to intact Arabidopsis rosette triggered a Rapid Transient Decrease (RTD) in stomatal conductance which, after lasting for 8–10 min, was followed by a 3–4 times slower recovery.3 The entire RTD, lasting for up to 40–50 min, is a conserved response in plants; to date it is found to be present in about 90 Arabidopsis ecotypes/mutants3 and also in tobacco and birch (unpublished results). Absence of RTD in protein phosphatase ABI1 and ABI2 mutants (abi1-1 and abi2-1) which are unable to form complex with PYR/PYL ABA receptors, in protein kinase OST1 and in guard cell plasma membrane anion channel SLAC1 mutants, indicates that O3-triggered signal propagates through the same phosphatase/kinase pair as does the signal triggered by ABA.3 Results of mostly proteomic, pharmacological and electrophysiological studies allow to suggest that the most likely reason for the rapid stomatal closure during RTD is the ABI1, ABI2 and OST1 mediated alterations in a battery of plasma membrane ion channels, including the outward-rectifying anion channel SLAC1 and the depolarization-activated K+ channel GORK1 which after their sequential activation result in efflux of osmotica, turgor loss and stomatal closure.Physiological background of the recovery during RTD which takes place also under continuous exposure to ozone2 is less understood. To study this process further we exposed whole rosettes of intact 22–25 day old Arabidopsis plants to different O3 concentrations for 3 min as described earlier3 and observed that after exposures to high concentration O3 pulses stomatal conductance recovered faster and reached higher values than were the preexposure values. We term this phenomenon “overshooting”.Ozone concentration of 70 nl l−1 did not induce RTD (Fig. 1A). At higher concentrations O3 induced intense decrease in stomatal conductance within 4–6 min after application. This was followed by rapid stoppage of the closure, a brief transition period and a sluggish, almost linear recovery where the pre-exposure value of stomatal conductance was reached about 30 min after the onset of O3 (Fig. 1A). The rates and extents of the O3-induced stomatal closure, as well as rates of reopening were concentration dependent. Continuation of the linear increase in stomatal conductance after reaching the pre-exposure value resulted in almost two-fold higher values at 50 min after the onset of 385 nl l−1 of O3. Overshootings were dependent on ozone concentration (Fig. 1B) and on the extent of the initial decrease in stomatal conductance (Fig. 1C). Both dependencies were exponential indicating a presence of threshold at 150–200 nl l−1 of O3 and at 20% of initial O3-induced decrease in stomatal conductance, respectively.Open in a separate windowFigure 1Ozone-triggered rapid decrease in stomatal conductance is followed by recovery to higher “overshooting” values. (A) Typical asymmetric time patterns of stomatal conductance after exposure of 22–25 day old Arabidopsis plant leaf rosettes to different concentrations of ozone as described in Kollist et al.2 In (B and C) O3-induced “overshooting” is plotted against O3 concentration and O3-induced decrease in stomatal conductance, respectively.What could be the reason and mechanistic explanation for described O3-induced “overshooting” in stomatal conductance? The protein kinase OST1 is required for induction of rapid closure phase of the O3-triggered RTD.3 Besides phosphorylating SLAC1,3,5 OST1 has been shown to phosphorylate also the inward-rectifying K+ channel KAT1 resulting in its inhibition.6 Inhibition of K+ uptake, which allows faster membrane depolarization and stomatal closure, has been shown to occur under various stresses.7 Presumably, H+-ATPase activity and proton pumping, tightly coupled to K+ uptake via channel energization8 are also suppressed by O3. It has been shown that in depolarized guard cell, plasma membrane proton pumping may precede volume and turgor increase.9 We speculate that in the O3-triggered, SLAC1- and GORK-mediated stomatal closure, when ion efflux and turgor loss proceed at high rates, reactivation of H+-ATPase and proton pumping and associated recovery of K+ uptake are induced to avoid guard cell plasmolysis.10 Guard cells begin to regain turgor and stomata reopen. At the same time outward-rectifying ion channels are transiently locked (inactivated) as stomata become completely insensitive to repeated O3-pulses during recovery phase.3 This interpretation is supported by our observation that the recovery in stomatal opening is heavily suppressed in kincless mutant3 where the inward rectifying K+ current is abolished.11 In addition, peak densities of inward K+ currents (2–4 µA/cm2 membrane9) are shown to be much lower than those for outward anion and K+ currents (17–20 µA/cm).2,8,12,13 This could be a reason why stomatal reopening is much slower than the initial O3-induced closure. Our findings (Fig. 1) suggest that the faster and deeper the O3-triggered turgor loss, the faster and extensive is its recovery. The “overshootings” suggest plasma membrane hyperpolarization and predict a viable oscillation-like stomatal behavior where the system tends to restore the initial equilibrium. Longer experiments are needed to address whether such an oscillating response exists in Arabidopsis elicited by O3.Taken together, our data suggest the presence of a “security” mechanism in plant guard cells which avoids the excessive dehydration and precipitous turgor loss by reswitching the reaccumulation of osmotica ultimately leading to stomatal opening. Molecular mechanism(s) linking feedback from low turgor to activation of plasma membrane proton pumping and subsequent ion uptake are obscure. Irrespective of mechanism(s), our data indicate that stomata tend to recover from stress the faster the stronger has been the perturbation at its onset. Undoubtedly, rapid O3-induced transient decrease in stomatal conductance is one of countless expressions of the Le Chatelier''s principle having numerous wordings like: “any change in status quo prompts an opposing reaction in the responding system,” or paraphrased on the basis of our results—the stronger the stimulus (O3 concentration) the stronger the response (“overshooting”).  相似文献   

10.
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.  相似文献   

11.
Development of the primary and early nodal roots was studied in Zea mays L., Zea mexicana (Schrad.) Reeves & Mangelsd., Sorghum bicolor (L.) Moench., and Sorghum sudanese (Piper) Stapf. in relation to shoot development. In all the types studied all roots reached lengths of about 30 centimeters before the late metaxylem (LMX) was open, and young plants with total root lengths of around 100 centimeters had almost no open LMX. On average, corn seedlings with up to 36 square centimeters of leaf had no open LMX. The name “immature apices” is suggested for such long but not fully functional roots. In plants up to 50 days old a fairly constant proportion of less than half the total root length had open LMX. A pilot study of stomatal resistance on days of high evaporative demand suggested that young seedlings may show higher resistance than older plants in the afternoon. Estimates of longitudinal permeability of corn roots with only early metaxylem vessels open indicate very steep gradients of water potential would develop under such conditions.  相似文献   

12.
The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection.  相似文献   

13.
Theory predicts that risk taking should be influenced by external (e.g., season) and internal (e.g., breeding condition, sex, and body mass) conditions. We investigated whether these factors are associated with a potentially risky behavior: exploration of a novel environment. We conducted repeated open‐field tests of exploration in a common forest rodent, the yellow‐necked mouse Apodemus flavicollis. Contrary to expectations, the exploration did not vary with the season (spring vs. fall) or the reproductive status of the tested animals. Also unexpectedly, there was an inverted U‐shaped relationship between body mass and exploration: animals with intermediate body mass tended to have the highest exploration tendencies. Males were more exploratory than females. Finally, even after adjusting for the effects of body mass and sex, individuals exhibited consistent, repeatable differences in exploration tendencies (“behavioral types” or “personalities”). The discrepancies between certain broad generalizations and our results suggest that risk taking depends on details of species‐specific biology.  相似文献   

14.
The extent and occurrence of water stress-induced “patchy” CO2 uptake across the surface of leaves was evaluated in a number of plant species. Leaves, while still attached to a plant, were illuminated and exposed to air containing [14C]CO2 before autoradiographs were developed. Plant water deficits that caused leaf water potential depression to −1.1 megapascals during a 4-day period did result in heterogenous CO2 assimilation patterns in bean (Phaseolus vulgaris). However, when the same level of stress was imposed more gradually (during 17 days), no patchy stomatal closure was evident. The patchy CO2 assimilation pattern that occurs when bean plants are subjected to a rapidly imposed stress could induce artifacts in gas exchange studies such that an effect of stress on chloroplast metabolism is incorrectly deduced. This problem was characterized by examining the relationship between photosynthesis and internal [CO2] in stressed bean leaves. When extent of heterogenous CO2 uptake was estimated and accounted for, there appeared to be little difference in this relationship between control and stressed leaves. Subjecting spinach (Spinacea oleracea) plants to stress (leaf water potential depression to −1.5 megapascals) did not appear to cause patchy stomatal closure. Wheat (Triticum aestivum) plants also showed homogenous CO2 assimilation patterns when stressed to a leaf water potential of −2.6 megapascals. It was concluded that water stress-induced patchy stomatal closure can occur to an extent that could influence the analysis of gas exchange studies. However, this phenomenon was not found to be a general response. Not all stress regimens will induce patchiness; nor will all plant species demonstrate this response to water deficits.  相似文献   

15.
Enrichment cultures for free-swimming microaerophilic bacteria were prepared from marine sulfidic sediment samples (Nivå Bay, Denmark). We observed nine different morphotypes; three of these morphotypes represented already-described species, i.e., Thiovulum majus, “Candidatus Ovobacter propellens,” and an as-yet-unnamed large vibrioid bacterium. In addition, we observed several morphotypes of spirilla and one vibrioid morphotype. A common feature of all investigated bacteria was that they aggregated chemotactically at the oxic-anoxic interface, whereas preferred oxygen concentration were in the range of 1 to 10 μM. The motile behavior and flagellar dynamics are analyzed in detail with an emphasis on spirilla.  相似文献   

16.
Nobel PS 《Plant physiology》1976,58(4):576-582
The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year.  相似文献   

17.
Phototrophic consortia represent valuable model systems for the study of signal transduction and coevolution between different bacteria. The phototrophic consortium “Chlorochromatium aggregatum” consists of a colorless central rod-shaped bacterium surrounded by about 20 green-pigmented epibionts. Although the epibiont was identified as a member of the green sulfur bacteria, and recently isolated and characterized in pure culture, the central colorless bacterium has been identified as a member of the β-Proteobacteria but so far could not be characterized further. In the present study, “C. aggregatum” was enriched chemotactically, and the 16S rRNA gene sequence of the central bacterium was elucidated. Based on the sequence information, fluorescence in situ hybridization probes targeting four different regions of the 16S rRNA were designed and shown to hybridize exclusively to cells of the central bacterium. Phylogenetic analyses of the 1,437-bp-long sequence revealed that the central bacterium of “C. aggregatum” represents a so far isolated phylogenetic lineage related to Rhodoferax spp., Polaromonas vacuolata, and Variovorax paradoxus within the family Comamonadaceae. The majority of relatives of this lineage are not yet cultured and were found in low-temperature aquatic environments or aquatic environments containing xenobiotica or hydrocarbons. In CsCl-bisbenzimidazole equilibrium density gradients, genomic DNA of the central bacterium of “Chlorochromatium aggregatum” formed a distinct band which could be detected by quantitative PCR using specific primers. Using this method, the G+C content of the central bacterium was determined to be 55.6 mol%.  相似文献   

18.
Electrical potentials in stomatal complexes   总被引:5,自引:2,他引:3       下载免费PDF全文
Guard cells of several species, but predominantly Commelina communis, were impaled by micropipette electrodes and potential differences measured that occurred between cell compartments and the flowing bathing medium. The wall developed a Donnan potential that was between −60 and −70 millivolt in 30 millimolar KCl at pH 7. The density of the fixed charges ranged from 0.3 to 0.5 molar; its dependence on pH was almost identical with the titration curve of authentic polygalacturonic acid. The vacuolar potential of guard cells of Commelina communis L., Zea mays L., Nicotiana glauca Graham, Allium cepa L., and Vicia faba L. was between −40 and −50 millivolt in 30 millimolar KCl when stomata were open and about −30 millivolt when stomata were closed. The vacuolar potential of guard cells of C. communis was almost linearly related to stomatal aperture and responded to changes in the ionic strength in the bathing medium in a Nernstian manner. No specificity for any alkali ion (except Li+), ammonium, or choline appeared. Lithium caused hyperpolarization. Calcium in concentrations between 1 and 100 millimolar in the medium led to stomatal closure, also caused hyperpolarization, and triggered transient oscillations in the intracellular potential. Gradients in the electrical potential existed across stomatal complexes with open pores. When stomata closed, these gradients almost disappeared or slightly reverted; all epidermal cells were then at potentials near −30 millivolt in 30 millimolar KCl.  相似文献   

19.
The central purpose of this paper is to elucidate in a well defined system the meaning of certain phenomena and concepts associated with the active transport of ions. To this end a specific model for a carrier system which actively transports a single ionic species is analyzed and discussed in detail. It is assumed in this model that the carrier-mediated ionic transport occurs in regions of the membrane physically separate from those regions in which free ionic movement takes place,—coupling between the active and passive regions of the membrane occurring through local current flows. The model is seen to display the following characteristics: (a) Starting from identical solutions on the two sides of the membrane, there is produced a redistribution of ions; (b) with identical solutions on the two sides of the membrane there exists a potential difference across the membrane, i.e., the “pump” is electrogenic; (c) the “short circuit” current for symmetrical solutions is equal to the flux of the neutral ion carrier complex; (d) the rate of active transport (and hence of metabolism) is dependent on the ionic concentrations in the surrounding solutions. Throughout the paper comparison is made between features of the model and properties displayed by biological active transport systems, but there is no claim of an identity between the two.  相似文献   

20.
Effects of 10−3m, 10−4m, and 10−5m phenylmercuric acetate (PMA) on stomatal movement and transpiration of excised Betula papyrifera leaves were investigated. Duco cement leaf prints and transpiration decline curves were used for the analysis of stomatal condition. PMA induced stomatal closure and decreased transpiration. Stomata of leaves treated with any of the 3 PMA concentrations closed earlier and at a higher relative water content than did stomata of untreated leaves. As determined from transpiration decline curves, PMA at 10−3m caused an increase in apparent “cuticular” transpiration. However, the increase appeared to result largely from some PMA-poisoned stomata which remained open for prolonged periods. Considerable PMA toxicity was observed, with 10−3m and 10−4m concentrations causing browning of leaves. PMA treatment caused a decrease in chlorophyll content, even at a low PMA concentration (10−5m) which influenced stomatal response only slightly and did not cause evident browning of leaves. The time and degree of stomatal opening varied with stomatal size. Large stomata tended to open earlier and close later than small stomata. Hence, in Betula papyrifera stomata of various size classes were considered as physiologically different populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号