首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Viral infection is detected by cellular sensors as foreign nucleic acid and initiates innate antiviral responses, including the activation of type I interferon (IFN) and proinflammatory cytokines. Recent advances in cytoplasmic virus sensors highlight their essential role in the induction of innate immunity. Moreover, it is intriguing to understand how they can discriminate innate RNA from viral foreign RNA. In this mini-review, we focus on these cytoplasmic virus sensors, termed retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs), and discuss their function in the innate immune system.  相似文献   

5.
6.
Mechanisms of MAVS Regulation at the Mitochondrial Membrane   总被引:1,自引:0,他引:1  
Mitochondria have emerged as critical platforms for antiviral innate immune signaling. This is due in large part to the mitochondrial localization of the innate immune signaling adaptor MAVS (mitochondrial antiviral signaling protein), which coordinates signals received from two independent cytosolic pathogen recognition receptors (PRRs) to induce antiviral genes. The existence of a shared adaptor for two central PRRs presents an ideal target by which the host cell can prevent cellular damage induced by uncontrolled inflammation through alteration of MAVS expression and/or signaling. In this review, we focus on the MAVS regulome and review the cellular factors that regulate MAVS by (1) protein–protein interactions, (2) alterations in mitochondrial dynamics, and/or (3) post-translational modifications.  相似文献   

7.
8.
A monoclonal antibody (mAb) against human Toll-like receptor (TLR) 3 was established and its effect on TLR3-mediated responses was tested using human fibroblast cell lines expressing TLR3 on the cell surface. Fibroblasts are known to produce IFN-beta upon viral infection or treatment with double-stranded RNA (dsRNA) through distinct signaling pathways. Here, we show the mAb to TLR3 suppressed poly(I):poly(C)-mediated IFN-beta production by human fibroblasts naturally expressing TLR3 on their surface. By reporter gene assay using HEK293 cells transfected with a human TLR3 expression vector, TLR3 recognized dsRNA to activate NF-kappaB and the IFN-beta promoter. TLR3 signaling was not elicited by either single-stranded RNA (ssRNA) or dsDNA. Thus, specific recognition of dsRNA by extracellular TLR3 is essential for induction of type I IFN: the interassociation between dsRNA and TLR3, regardless of direct or indirect binding, should be disrupted by mAb being attached to TLR3. The mAb against TLR3 reported herein may serve as a regulator for virus-mediated immune response via an alternative pathway involving the dsRNA-TLR3 recognition which might occur on host cells.  相似文献   

9.
10.
Intracellular RNA virus infection is detected by the cytoplasmic RNA helicase RIG-I that plays an essential role in signaling to the host antiviral response. Recently, the adapter molecule that links RIG-I sensing of incoming viral RNA to downstream signaling and gene activation events was characterized by four different groups; MAVS/IPS-1-1/VISA/Cardif contains an amino-terminal CARD domain and a carboxyl-terminal mitochondrial transmembrane sequence that localizes to the mitochondrial membrane. Furthermore, the hepatitis C virus NS3-4A protease complex specifically targets MAVS/IPS-1/VISA/Cardif for cleavage as part of its immune evasion strategy. With a novel search program written in python, we also identified an uncharacterized protein, KIAA1271 (K1271), containing a single CARD-like domain at the N terminus and a Leu-Val-rich C terminus that is identical to that of MAVS/IPS-1/VISA/Cardif. Using a combination of biochemical analysis, subcellular fractionation, and confocal microscopy, we now demonstrate that NS3-4A cleavage of MAVS/IPS-1/VISA/Cardif/K1271 results in its dissociation from the mitochondrial membrane and disrupts signaling to the antiviral immune response. Furthermore, virus-induced IKKepsilon kinase, but not TBK1, colocalized strongly with MAVS at the mitochondrial membrane, and the localization of both molecules was disrupted by NS3-4A expression. Mutation of the critical cysteine 508 to alanine was sufficient to maintain mitochondrial localization of MAVS/IPS-1/VISA/Cardif and IKKepsilon in the presence of NS3-4A. These observations provide an outline of the mechanism by which hepatitis C virus evades the interferon antiviral response.  相似文献   

11.
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

12.
《Genomics》2021,113(4):2400-2412
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are well-known viral RNA sensors in the cytoplasm. RIG-I-mediated antiviral signals are activated by interacting with the adapter protein mitochondrial antiviral signaling (MAVS), which triggers interferon (IFN) responses via a signaling cascade. Although the complete RIG-I receptor signaling pathway has been traced back to teleosts, definitive evidence of its presence in lampreys is lacking. Here, we identified 13 pivotal molecules in the RIG-I signaling pathway in lamprey, and demonstrated that the original RIG-I/MAVS signaling pathway was activated and mediated the expression of unique immunity factors such as RRP4, to inhibit viral proliferation after viral infection in vivo and in vitro. This study confirmed the conservation of the RIG-I pathway, and the uniqueness of the RRP4 effector molecule in lamprey, and further clarified the evolutionary process of the RIG-I antiviral signaling pathway, providing evidence on the origins of innate antiviral immunity in vertebrates.  相似文献   

13.
14.
It has been already known that human diploid fibroblasts are able to produce not only high levels of IFN-beta but also various kinds of cytokines by poly rI: poly rC, and some inflammatory cytokines are induced by IFN-beta gene activation. We also obtained similar results. However, in our system, cytokine productions were extremely enhanced by treating the cells with a low dose of type 1 IFN and the priming effects on cytokine productions were blocked by cycloheximide similar to those on IFN-beta productions. Most of cytokines were produced later than IFN-beta and synthesis patterns of their mRNA showed the same phenomena. We made clear that cytokine productions by poly rI: poly rC are mediated by secreted IFN-beta at a protein level using a monoclonal antibody against human IFN-beta. Further, it was shown that intra-cellular IFN-beta which is not secreted might also participate in cytokine productions. Meanwhile, IL-1beta induced various kinds of cytokines in human fibroblasts and production time courses of these cytokines were similar to those of poly rI: poly rC induced cytokines. Although secreted IFN-beta was not detected in IL-1beta stimulated culture, expression of IFN-beta mRNA was augmented. These results showed that priming effects of type 1 IFN on cytokine productions by poly rI: poly rC might not be the direct action, but successive IFN-beta production might be essential in the production processes of other cytokines. Further, it was suggested that inducible IFN-beta might also take part in IL-1beta-induced cytokine productions.  相似文献   

15.
Retinoic acid‐inducible gene I (RIG‐I) and melanoma differentiation‐associated gene 5 (MDA5) are cytoplasmic sensors crucial for recognizing different species of viral RNAs, which triggers the production of type I interferons (IFNs) and inflammatory cytokines. Here, we identify RING finger protein 123 (RNF123) as a negative regulator of RIG‐I and MDA5. Overexpression of RNF123 inhibits IFN‐β production triggered by Sendai virus (SeV) and encephalomyocarditis picornavirus (EMCV). Knockdown or knockout of endogenous RNF123 potentiates IFN‐β production triggered by SeV and EMCV, but not by the sensor of DNA viruses cGAS. RNF123 associates with RIG‐I and MDA5 in both endogenous and exogenous cases in a viral infection‐inducible manner. The SPRY and coiled‐coil, but not the RING, domains of RNF123 are required for the inhibitory function. RNF123 interacts with the N‐terminal CARD domains of RIG‐I/MDA5 and competes with the downstream adaptor VISA/MAVS/IPS‐1/Cardif for RIG‐I/MDA5 CARD binding. These findings suggest that RNF123 functions as a novel inhibitor of innate antiviral signaling mediated by RIG‐I and MDA5, a function that does not depend on its E3 ligase activity.  相似文献   

16.
17.
18.
In the cytosol, the sensing of RNA viruses by the RIG-I-like receptors (RLRs) triggers a complex signaling cascade where the mitochondrial antiviral signaling protein (MAVS) plays a crucial role in orchestrating the innate host response through the induction of antiviral and inflammatory responses. Hence, in addition to their known roles in the metabolic processes and the control of programmed cell death, mitochondria are now emerging as a fundamental hub for innate anti-viral immunity. This review summarizes the findings related to the MAVS adapter and mitochondria in the innate immune response to RNA viruses.  相似文献   

19.
Calcineurin homologous protein 1 (CHP1) is a widely expressed, 22-kDa myristoylated EF-hand Ca2+-binding protein that shares a high degree of similarity with the regulatory B subunit of calcineurin (65%) and with calmodulin (59%). CHP1 localizes to the plasma membrane, the Golgi apparatus, and the nucleus and functions to regulate trafficking of early secretory vesicles, activation of T cells, and expression and transport of the Na-H exchanger NHE1. Although CHP1 contains nuclear export signals, whether its nuclear and cytoplasmic localization is regulated and has distinct functions remain unknown. We show that CHP1 is predominantly in the nucleus in quiescent fibrobasts, is translocated to cytoplasmic compartments with growth medium, and that translocation is inhibited by mutations in the nuclear export motifs. In a screen for proteins co-precipitating with CHP1 in quiescent cells we identified the upstream binding factor UBF, a DNA-binding protein and component of the RNA polymerase I complex regulating RNA synthesis. The CHP1-UBF interaction is restricted to the nucleus and inhibited by Ca2+. Nuclear retention of CHP1 attenuates the abundance of UBF in the nucleolus and inhibits RNA synthesis when quiescent cells are transferred to growth medium. These data show UBF as a newly identified CHP1-binding protein and regulation of RNA synthesis as a newly identified function for nuclear-localized CHP1, which is distinct from CHP1 functions in the cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号