首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kjensmo  Johannes 《Hydrobiologia》1997,347(1-3):151-159
Primarily as a result of road salting, the water masses ofLake Svinsjøen, a small meromictic lake in southeasternNorway, have been subject to great changes in salinity duringthe period 1947–1995. The greatest change in saltconcentration has occurred in the upper part of themonimolimnion (depth 10–15 m) where mean conductivityincreased 104.2 per cent, from 143 to 292 S cm–1. Inthe upper mixolimnion (depth 0-5 m), mean conductivity rosefrom 130 to 238 S cm–1 during the same period. Theions responsible for the salinity changes were Na+ andCl from de-icing salts, and Ca2+ and Cl fromsalts used to keep down dust from roads. Further sources ofCa2+ are the road asphalt and increased weathering andleaching of the lime-rich rocks caused by acid precipitation,the main source of the additional inputs of SO tothe lake. The salinity changes caused major changes inmeromictic stability, S . In the period1947-1966, S increased by 24 g cm cm–2,and the maximum level of meromictic stability, 125 gcm–2, was found in 1966. As a result of higher rate ofsalt accumulation in the upper part of the monimolimnion andin the mixolimnion, S decreased by 30 g cmcm–2 during the period 1966-1991, and a simultaneousrise in the chemocline took place. In the period 1991-1995 anadditional decrease of 26 g cm cm–2 occurred. Continuedectogenic inputs of salts through processes typical of thetime period investigated will in future further weaken thelake's meromictic stability, and may cause the demise ofmeromixis in Lake Svinsjøen, a development which may haveimportant implications for primary productivity of thelake.  相似文献   

2.
Both in situ primary production and biomass (chlorophyll ) of fractionated phytoplankton (<64,µ, <25 µm and < 10 µm) were studied in 10 Canadian Shield lakes to elucidate the spatial and temporal variability of the contribution of size fractions to the biomass and primary production of the phytoplankton community. Mean summer biomass and production of each size fraction varied significantly between lakes. Within lakes, temporal variation was low for biomass but great for production. However, temporal variation can be considered of minor importance during the sampling period, as compared to the spatial variation between lakes. Algae from the < 10 µm size fraction were the most important in biomass (41–65 %) and production (23–69%). The temporal trends for both phytoplankton variables thus generally followed closely that of the < 10 µm size fraction. Among the physical, chemical and morphometric variables of the studied lakes, water transparency (Secchi disk), total phosphorus, lake volume, lake area, and mean depth gave the best correlations with phytoplankton variables.Contribution number 354 from the Groupe de recherches en Ecologie des Eaux douces, Limnological Research Group, Université de Montréal.  相似文献   

3.
Macedo  M. F.  Duarte  P.  Ferreira  J. G.  Alves  M.  Costa  V. 《Hydrobiologia》2000,441(1):155-172
Physical, chemical and biological observations made in late July and August 1997 across the Azores Front (37° N, 32°W to 32° N, 29°W) are presented. The objectives of the study were: (1) to analyse horizontal and vertical profiles of temperature, salinity, density, nutrients and chlorophyll-a (Chl a) of the top 350 m; (2) to identify the main differences in the deep Chl a Maximum (DCM) and hydrographic structure between the water masses that pass north and south of the Azores Front; and (3) to estimate phytoplankton primary production in these water masses. Horizontal and vertical profiles of salinity, temperature, density, nutrients and phytoplankton pigments in the top 350 m were analysed. The Front separates two distinct water types: the 18°C Mode Water (18 MW) of sub-tropical origin, and the 15°C Mode Water (15 MW) of sub-polar origin. Differences in the DCM and hydrographic structure between 18 MW and 15 MW were observed in the contour plots of each section. The average Chl a concentration between 5 and 200 m depth decreased significantly from 15 MW to 18 MW. The same pattern was observed for the Chl a concentration at the DCM depth. A vertical one-dimensional model was used to estimate the phytoplankton primary production in the 15 MW and 18 MW and led to an estimated water column average gross primary productivity (GPP) between 1.08 and 2.71 mg C m–3 d–1 for the 15 MW and about half of these values for the 18 MW. These results indicate that the typical south–north positive slope on DCM depth parallels a latitudinal increase on GPP, suggesting that the location of the Azores Front may have a significant regional impact on GPP.  相似文献   

4.
The qualitative and quantitative composition of the Chaetoceros Ehr. species was studied in Amursky Bay (Sea of Japan) from January 1996 until May 1998. In all, 30 species, 1 variety, and 1 form of this genus were registered. The species Chaetoceros occurred in plankton throughout the year at a water temperature of –1.8–25°C and a salinity of 11–35. The numbers of Chaetoceros species varied between 100 and 1071000 cells/l, and the biomass varied between 0.9 × 10–3 and 3.3 g/m3. The numbers were maximum in summer and minimum in the beginning of spring. The Chaetoceros species comprised 45–70 and 5–18% (winter), 68–98 and 65–95% (spring), 50% (summer), and 20% (autumn) of the total phytoplankton numbers and biomass. Six dominant species and 1 variety of Chaetoceros were found. Seasonal complexes formed by the Chaetoceros species were identified and described.  相似文献   

5.
Plankton communities and hydrochemistry of an oligotrophic lake occupying a glacial valley in Argentinian Patagonia (42 °49S; 71 °43W) were studied. Monthly samples at three stations integrated from 0 to 50 m and stratified samples at the site of maximum depth, were taken during the growing season. Transparency was always controlled by glacial silt, and not by phytoplankton. Lake water belongs to the calcium-bicarbonate type, with low conductivity (24 µS cm–1), and poor buffering capacity. Forty-five phytoplankton taxa were found. Mean phytoplankton density was 49 cells ml–1 and mean biomass 69 µg l–1. N:P relationships, inorganic nitrogen exhaustion in the photic layer, and correlations between nutrients and phytoplankton density suggests nitrogen as the main limiting factor. Fifteen zooplankton species were found. Mean zooplankton density was 12.2 ind. l–1 and mean biomass 22.9 µg l–1. Diatoms and Boeckellidae were the dominant planktonic groups. Morphometry and hydrological factors were responsible for horizontal heterogeneity in phytoplankton and chemical variables.  相似文献   

6.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

7.
Seasonal changes in the phytoplankton at four depths off Tema, Ghana were investigated between September 1973 and November 1974. The physico-chemical factors show that there are two marine seasons, the season of major upwelling (July–October), characterized by low water temperatures (< 25°C), high salinity (> 35) and high nutrient levels, and a non-upwelling period (November–June) when water temperatures are higher and salinity and nutrients are lower. The latter marine season is broken by a small, unpredictable upwelling (December-January). Phytoplankton cell counts are high (> 1000 × 103 cells/1) during the major upwelling period and can be very low (< 2 × 103 cells/1) during the non-upwelling period. Dinoflagellates form the main components of the phytoplankton population during the nonupwelling period and diatoms form the dominant components at other times. There is a close relationship between the physicochemical factors and the phytoplankton population especially during the major upwelling period. For example there is a good correspondence between the peaks in phytoplankton numbers and low levels of nutrients such as silicate, nitrate and phosphate with the reverse taking place at other times.  相似文献   

8.
We studied the effects of different salinities on plankton larvae of some polychaetes in the White Sea. It has been found that the salinity resistance of Alitta virens (Nereidae) increases during ontogenesis. Successful fertilization and further larval development in this species occur at the salinity of 22 to 34; embryos taken into the experiment at the stage of 32 blastomeres, trochophores, and early nektochaetes could survive and normally develop at the salinity of 16–32, 14–45, and 12–45 respectively. The rate of settling and metamorphosis in late nektochaetes of A. virens at normal or lowered (down to 14) salinity is dependent on temperature in the range of 5 to 23°C. It is found that the larvae of Harmothoe imbricata (Polynoidae) show the greatest salinity resistance at the stage of nektochaeta, whose lower limit of salinity is 14. Later larval stages of these species can survive in a wide range of salinity due to the development of a provisory nephridial system. The eurybionty of larvae of Spirorbis spirorbis ready for metamorphosis was higher than that in the larvae of Circeus spirillum (Spirorbidae). Under salinity reduced down to 10 the larvae of S. spirorbis die in 8–14 days, whereas more stenohaline larvae of C. spirillum die by the 3-rd day of the experiment. At water temperatures under 5°C the survival of S. spirorbis was the highest at three examined values of salinity, whereas C. spirillum showed the highest survival only under normal salinity.  相似文献   

9.
Light penetrance in lake kinneret   总被引:2,自引:2,他引:0  
The characteristics of light penetrance in Lake Kinneret, Israel, were observed over the years 1970 to 1973. Light measurements were made concurrently with those of algal speciation and biomass, chlorophyll concentrations and primary production. Vertical extinction coefficients of green light (filter VG9), the most penetrating spectral component, ranged from 0.15 (August 1970) to 0.93 In units m–1 (April 1970), reflecting the large differences between algal standing crops in non-bloom and bloom seasons. During the dinoflagellate bloom (Peridinium cinctum fa westii) from February through June, the increment of extinction coefficient per unit increase of chlorophyll concentration was 0.006 ln units mg–1 m2. The uneven vertical distribution of algae at this period caused irregularities in the depth curves of light penetrance. At other times, when the phytoplankton cells were more homogeneously dispersed with depth, regular light penetrance curves were observed; however, as previously noted (Rodhe, 1972), attenuation of algal photosynthetic activity often appeared to be regulated by the blue spectral component (filter BG 12). Ratios of absorbed to scattered light in the upper water column ranged from 85:15 to 75:25.  相似文献   

10.
The effectiveness of the protection of embryos and larvae in egg masses from reduced salinity and desiccation was investigated in the gastropod Epheria turrita, which inhabits the intertidal and upper subtidal zones. Embryos and larvae developing inside egg masses were shown not to be protected against changes in environmental salinity. Viable larvae hatched from egg masses at a salinity of 24–26. However, if free-swimming veliger larvae, rather than egg masses, were transferred to water of reduced salinity, the range of salinity tolerated by the larvae was wider, and its lower limit was 18–20. Egg masses did not protect against desiccation either. A 3-h exposure of egg masses to drying resulted in larval mortality. Larvae hatched from egg masses did not rise to the surface and displayed an early tendency towards gregarious behavior, which apparently enhances their ability to settle on a proper substrate near parental populations.  相似文献   

11.
A bloom of the unicellular green alga Dunaliella parva (up to 15 000 cells m1–1) developed in the upper 5 m of the water column of the Dead Sea in May-June 1992. This was the first mass development of Dunaliella observed in the lake since 1980, when another bloom was reported (up to 8800 cells m1–1). For a bloom of Dunaliella to develop in the Dead Sea, two conditions must be fulfilled: the salinity of the upper water layers must become sufficiently low as a result of dilution with rain floods, and phosphate must be available. During the period 1983–1991 the lake was holomictic, hardly any dilution with rainwater occurred, and no Dunaliella cells were observed. Heavy rain floods in the winter of 1991–1992 caused a new stratification, in which the upper 5 m of the water column became diluted to about 70% of their former salinity. Measurements of the isotopic composition of inorganic carbon in the upper water layer during the bloom (13C = 5.1) indicate a strong fractionation when compared with the estimated –3.4 prior to the bloom. The particulate organic carbon formed was highly enriched in light carbon isotopes ( 13 C = – 13.5). The algal bloom rapidly declined during the months June–July, probably as a result of the formation of resting stages, which sank to the bloom. A smaller secondary bloom (up to 1850 cells m1–1) developed between 6 and 10 m depth at the end of the summer. Salinity values at this deep chlorophyll maximum were much beyond those conductive for the growth of Dunaliella, and the factors responsible for the development of this bloom are still unclear.  相似文献   

12.
The effects of seawater temperature (12, 16, 20, 22, and 25°C) and salinity (of 8 to 34) in different combinations on the larvae of the rhizocephalan Peltogaster reticulatus (Crustacea: Cirripedia), a parasite of the hermit crab Pagurus proximus, were examined. The development of P. reticulatus is comprised of five naupliar stages and one cypris stage. Nauplii have a specific structure, the flotation collar encircling the dorsal side of the larval body. Larvae lack the pigmented nauplius eye, and they show no positive phototaxis. Successful naupliar development occurred in temperature and salinity ranges of 16–25°C and 20 to 34, respectively; but all nauplii died at 12°C and 16. The duration of each naupliar stage increased under lowering of the seawater temperature. At 22–25°C and 26–28, the entire development cycle was completed in 72–80 h; and at 16°C and 20 it lasted 153 h. The cypris larvae showed a greater resistance to decreased salinity in comparison with the nauplii. At temperatures of 16–25°C and salinities of 14 to 34, the lifespan of cyprids was 6 to 12 days, and it decreased at increasing temperature.  相似文献   

13.
The distribution and abundance of phytoplankton within a sampling grid of 50×103 km2 around Elephant Island were determined from early January to mid-March of 4 successive years, 1990–1993. The number of stations where physical-optical-biological data were obtained from the surface to a maximum of 750 m ranged from 74 in 1990 to 206 in 1993. Contour maps of chlorophyll-a (chl-a) concentrations showed marked mesoscale patchiness that varied from month to month and also interannually. The distribution patterns for chl-a were similar when plotting surface concentrations or integrated values to 100 m. Three major zones could be distinguished that differed in both physical and biological characteristics. Stations in the northwest portion of the grid (Drake Passage waters) and in the southeast portion of the grid (Bransfield Strait waters) showed the most pronounced interannual variations, with phytoplankton biomass and rates of primary production being considerably higher in 1990–91 than in 1992–93. The central portion of the sampling grid, which included the major frontal system north of Elephant Island, showed the smallest interannual variations in both biological and physical parameters and the highest rates of primary production. Phytoplankton biomass and rates of primary production were correlated with depth of the upper mixed layer (UML), which in turn was correlated with the measured wind stress. The mean depth of the UML was 50 m, while the mean depth of the euphotic zone was 90 m. Using the measured mean surface solar irradiance (550 Einsteins m–2 s–1), the mean irradiance experienced by cells in the UML of 50 m would be around 105 E m–2 s–1, which is similar to the measured Ik (light saturation) value for photosynthesis (101 Em–2 s–1). The mean value from all cruises for chl-a in surface waters was 0.7 mg m–3, while the mean rate of primary production was 374 mg Cm–2 day–1.  相似文献   

14.
Phytoplankton biomass and primary production rates within semi-enclosed reef lagoons of the central Great Barrier Reef were compared with adjacent shelf waters. Chlorophyll concentrations and surface primary production rates were usually higher in lagoons although seasonal differences were only significant during the summer. Nitrate concentrations were higher in lagoons than in shelf waters year-round. Nano- (<20 m size fraction) or pico-phytoplankton (<2 m size fraction) dominated phytoplankton biomass and production within reef lagoons throughout the year. Net phytoplankton (>10–20 m size fraction), however, were relatively more important in both reef lagoons and open shelf waters during the summer. Biomass-specific production within lagoons (range 41–90 mg C mg chl–1 day–1) was high, regardless of season. Lagoonal phytoplankton production (range 0.2–1.6 g C m–2 day–1) was directly correlated with standing crop and inversely related to lagoon flushing rates. Phytoplankton blooms develop within GBR reef lagoons during intermittent calm periods when water residence times exceed phytoplankton generation times.  相似文献   

15.
Fallisia biporcati n. sp. parasitises thrombocytes and lymphocytes of Anolis biporcatus and A. lionotus in Panama. Round or oval schizonts average 13.3 × 11.5 (10.5–16 × 9–13) m, with LW 153.8 (94–208) m2, and produce 38.3 (28–60) merozoites. Gametocytes are variably shaped, from round or oval to nearly triangular or rectangular, and average 12.6 × 9.0 (10–15 × 6–12) m, with LW 113.1 (82–150) m2 and L/W ratio 1.43 (1.0–2.2). Thrombocytes and lymphocytes of A. poecilopus in Panama are parasitised by F. poecilopi n. sp. Schizonts, oval to elongate in shape, 7.7 × 4.7 (5.5–9 × 3–6) m, with LW 36.5 (22–54) m2, are filled with 31.0 (20–51) tiny nuclei or merozoites. Gametocytes are 10.1 × 8.0 (7.5–14 × 6–11) m, with LW 82.0 (45–132) m2, round to elongate with L/W ratio 1.27 (1.0–1.6). F. thecadactyli n. sp. parasitises thrombocytes and lymphocytes of Thecadactylus rapicaudus in Panama and Venezuela. Oval, oblong, or triangular schizonts average 10.3 × 8.0 (7–13 × 5–12) m, with LW 86.6 (37–156) m2, and produce 40.2 (26–61) merozoites. Gametocytes are round, oval, triangular or elongate, 10.4 × 7.0 (7–15 × 5–11) m, with LW 74.8 (40–154) m2 and L/W ratio 1.51 (1.1–2.2). F. dominicensis n. sp. parasitises thrombocytes of A. cybotes on Hispaniola. Schizonts, 6.0 × 4.8 (4–8 × 3–7) m, with LW 29.1 (12–56) m2, round, oval, elongate, oblong or lentiform in shape, produce 12.4 (8–22) merozoites. Gametocytes are 6.6 × 5.0 (5–9 × 4–7) m , with LW 33.8 (20–56) m2, round, oval or elongate, and L/W ratio of 1.34 (1.1–2.0).  相似文献   

16.
Integrated cultivation of salmonids and seaweeds in open systems   总被引:2,自引:2,他引:0  
Bacterial abundance and production in a vertical profile in Lake Kariba (17dgS), Zimbabwe, were affected by solar irradiance. At the surface, 1.87 × 109 bacteria 1–1 were found and abundance peaked at 10 m (2.5 × 109 bacteria l-1), then decreasing with depth. Bacterial reproduction at the surface(0.145 µg C1–1 h–1) was nearly four times less than the production at 10 m although bacterial numbers were only 26% less. Thus, bacterial production per cell was lower at the surface than deeper down, suggesting that bacterial production is inhibited at the surface.Bacterial production in GF/F filtered lake water in Whirl Pack bags showed an exponential decrease down to 3 m depth. The inhibition was well in accordance with light extinction in the UV region. Phosphatase activity was low in light exposed bags compared to dark, indicating photolysis of extracellular enzymes, or phototransformation of recalcitrant DOM, which substitutes enzyme activity. Hypolimnetic enzyme activity was less affected by solar light than epilimnetic.  相似文献   

17.
Nick V. Aladin 《Hydrobiologia》1991,225(1):291-299
The hyperosmotic regulation of adult Cladocera is determined mainly by the amount of salts consumed with the food and by reabsorption of salts in cells of the nuchal (neck) organ. The hypoosmotic regulation both in adults and embryos is determined mainly by excretion of salts in special epipodite cells or in cells of the nuchal (neck) organ. The salinity of the Aral sea for the last 30 years increased from 8–10 to 26–28, which led to changes in the Cladocera fauna. At present only 4 species of Cladocera inhabit the Aral sea instead of 14 species that were previously found. These changes are in agreement with osmoregulation capacities of Cladocera. Note added in proof. Since this paper was accepted for publication, all Cladocera have disappeared from the Aral Sea. This happened when salinity reached 30–32. This disappearance was predicted by and agrees with earlier laboratory experiments with Aral Sea Cladocera (Aladin, 1982b).  相似文献   

18.
The object of this work was to determine, using a full-factorial experiment, the influence of temperature, irradiance and salinity on growth and hepatotoxin production by Nodularia spumigena, isolated from Lake Alexandrina in the south-east of South Australia. Higher levels of biomass (determined as particulate organic carbon, POC), toxin production and intracellular toxin concentration per mg POC were produced under light limited conditions (30 mol m–2 s–1) and at salinities equal to or greater than those experienced in Lake Alexandrina. Both highest biomass and total toxin production rates were recorded at temperatures equal to or greater than those of the lake (20 and 30°C). The temperature at which maximum biomass and toxin production was recorded decreased from 30°C for cultures grown at 30 mol m–2 s–1 to 20°C when grown at 80 mol m–2 s–1. In contrast, intracellular toxin per mg POC was highest at the lowest growth temperature, 10°C, at both 30 and 80 mol m–2 s–1. It appears that the optimum temperature for biosynthetic pathways used in the production of toxin is lower than the optimum temperature for those pathways associated with growth. Intracellular toxin levels were higher in cells cultured at 10°C/30 mol m–2 s–1 whereas the majority of the toxin was extracellular in cells grown at 30°C/30 mol m–2 s–1. This implies that the highest concentration of toxin in lake water would occur under high temperature and high irradiance conditions. Individual environmental parameters of salinity, irradiance and temperature were all shown to influence growth and toxin production. Notwithstanding, the overall influence of these three parameters on toxin production was mediated through their effect upon growth rate.  相似文献   

19.
Wen  Zhao  Shuang-Lin  Dong 《Hydrobiologia》2003,492(1-3):181-190
Primary productivity, biomass and chlorophyll-a of size fractionated phytoplankton (<0.22 m, <3 m, <8 m, <10 m, <40 m, <64 m, <112 m and <200 m) were estimated in 6 ponds and 5 experimental enclosures. The results showed that the planktonic algae less than 10 m are important in the biomass and production of phytoplankton in saline–alkaline ponds. The production of size fractionated phytoplankton corresponding to <112 m, <10 m and <3 m in saline–alkaline ponds were 10.5 ± 6.6 , 8.6 ± 5.4 and 0.33 ± 0.1 mgC l–1 d–1, respectively. Mean community respiration rate was 1.80 ± 0.73, 1.69 ± 0.90 and 1.38 ± 1.12 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) were 1.61, 8.30 and 0.33 mgC l–1 d–1, respectively. The ratio of those to the total phytoplankton production was 15%, 79% and 3%, respectively. The mean respiration rate of the different size groups was 0.11, 0.31 and 1.38 mgC l–1 d–1; the ratio of those to total respiration of phytoplankton was 6%, 17% and 77%, respectively. The production of size-fractionated phytoplankton corresponding to <200 m, <10 m and <3 m in enclosures was 2.19 ± 1.63, 2.08 ± 1.75 and 0.22 ± 0.08 mgC l–1 d-1, respectively. Mean community respiration rates were 1.25 ± 1.55, 1.17 ± 1.42 and 0.47 ± 0.32 mgC l–1 d–1, respectively. The average production of phytoplankton corresponding to micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton was 0.11, 1.86 and 0.22 mgC l–1 d–1, respectively. The ratio of those to the total production of phytoplankton was 5%, 85% and 10%, respectively. The mean respiration rate of different size groups were 0.08, 0.72 and 0.46 mgC l–1 d–1, the ratio of those to total respiration of phytoplankton was 6%, 57% and 37%, respectively. The concentrations of chlorophyll-a of the phytoplankton in the corresponding size of micro- (10–112 m), nano- (3–10 m) and pico- (<3 m) plankton in the experimental ponds were 19.3, 98.2 and 11. 9 g l–1, respectively. The ratio of those to the total chlorophyll-a was 15%, 76% and 9%, respectively. The concentrations of chlorophyll-a of phytoplankton micro- (10–200 m), nano- (3–10 m) and pico- (<3 m) plankton in enclosures were 1.7, 34.3 and 3.0 g l–1, respectively. The ratio of those to the total chlorophyll-a was 4%, 88% and 8%, respectively.  相似文献   

20.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号