共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of polyethylene glycol (PEG) molecular weight and concentration on mammalian cell hybridization were studied. The peak hybridization-inducing activity with all grades of PEG from 400-6000 was found to occur in the concentration range of 50-55%. However, changes in concentration were seen to have different quantitative effects with different grades of PEG. For monolayer fusions, PEG 1000 at 50% seems to be the optimal combination of PEG molecular weight and concentration, in terms of both efficiency of hybridization and relative insensitivity to dilution effects. 相似文献
2.
Cytogenetic characteristics of 26 polyethylene glycol-induced human-hamster hybrid cell lines 总被引:1,自引:0,他引:1
H S Wang V Niewczas H R de S Nazareth J L Hamerton 《Cytogenetics and cell genetics》1979,24(4):233-244
A cytological analysis of 26 polyethylene glycol (PEG) induced human/hamster hybrid lines has shown that such lines are similar to inactivated Sendai virus (ISV) induced hybrids in respect to stability, retention of specific chromosomes, and cell selection. The evolution of stable hybrid cell lines carrying variable human chromosome complements depends upon a balance being established between the retained human and hamster genomes. This balance is a result of random loss of human and hamster chromosomes followed by selection of the fittest stem lines. A major mechanism ofchromosome loss may be fragmentation and elimination of acentric fragments. Twelve of the 26 lines had stabilized by the 30th passage, an incidence similar to that found with ISV-induced hybrids studied in this laboratory. Thus, PEG may be considered to be an ideal chemical for inducing somatic cell hybrids for genetic analysis. 相似文献
3.
4.
Stephen Wood 《Human genetics》1978,41(3):325-329
Summary Juvenile Sandhoff, Sandhoff, and Tay-Sachs fibroblasts were mixed in paired combinations and treated with polyethylene glycol (PEG) to promote cell fusion. The hexosaminidase (hex) isozymes of PEG-treated mixed-cell cultures were determined and compared with those of untreated control cultures. Fusions involving juvenile Sandhoff and Sandhoff fibroblasts did not show an increase in either total hexosaminidase or heat-stable hex B. Fusions of juvenile Sandhoff (or Sandhoff) and Tay-Sachs fibroblasts showed an increase of heat-labile hex A. Thus, juvenile Sandhoff cells show complementation with Tay-Sachs cells but not Sandhoff cells. Consequently, the genetic defect in juvenile Sandhoff disease probably represents an allelic mutation of the gene that is defective in Sandhoff disease. 相似文献
5.
J Kajstura W Korohoda 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》1988,26(2):77-82
Incubation of cells in a medium with NaCl concentration increased by 0.2 mol/l for one hour prior to and one hour after the polyethylene glycol induced cell fusion improves the performance of fusion. This procedure increases the percentage of fused cells, the formation of massive fusion products (in case of fusion performed in suspension) and allows the improvement of cell viability. The possible mechanisms involved in such effects of increased NaCl concentration are discussed. 相似文献
6.
J Kajstura 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》1989,27(1):19-24
Cytochalasin B inhibits the polyethylene glycol (PEG)-induced fusion of chick embryo fibroblasts. Induction of fusion of these cells by PEG is associated with transient changes in the pattern of F-actin organization within the cell. The changes include the disappearance of stress fibres and accumulation of F-actin under the plasma membrane. These results suggest an involvement of F-actin in PEG-induced cell fusion. 相似文献
7.
Analysis of muscle protein expression in polyethylene glycol-induced chicken: rat myoblast heterokaryons 下载免费PDF全文
《The Journal of cell biology》1983,97(5):1348-1355
Heterokaryons derived from polyethylene glycol-mediated fusion of myoblasts at different stages of development were used to investigate the transition of cells in the skeletal muscle lineage from the determined to the differentiated state. Heterokaryons were analyzed by immunofluorescence, using rabbit antibodies against the skeletal muscle isoforms of chicken creatine kinase and myosin, and a mouse monoclonal antibody that cross-reacts with chicken and rat skeletal muscle myosin. When cytochalasin B-treated rat L8(E63) myocytes (Konieczny S.F., J. McKay, and J. R. Coleman, 1982, Dev. Biol., 91:11-26) served as the differentiated parental component and chicken limb myoblasts from stage 23-26 or 10-12-d embryos were used as the determined, undifferentiated parental cell, heterokaryons exhibited a progressive extinction of rat skeletal muscle myosin during a 4-6-d culture period, and no precocious expression of chicken differentiated gene products was detected. In the reciprocal experiment, 85-97% of rat myoblast X chicken myocyte heterokaryons ceased expression of chicken skeletal muscle myosin and the M subunit of chicken creatine kinase within 7 d of culture. Extinction was not observed in heterokaryons produced by fusion of differentiated chicken and differentiated rat myocytes and thus is not due to species incompatibility or to the polyethylene glycol treatment itself. The results suggest that, when confronted in a common cytoplasm, the regulatory factors that maintain myoblasts in a proliferating, undifferentiated state are dominant over those that govern expression of differentiated gene products. 相似文献
8.
Role of pulse shape in cell membrane electropermeabilization 总被引:2,自引:0,他引:2
The role of the amplitude, number, and duration of unipolar rectangular electric pulses in cell membrane electropermeabilization in vitro has been the subject of several studies. With respect to unipolar rectangular pulses, an improved efficiency has been reported for several modifications of the pulse shape: separate bipolar pulses, continuous bipolar waveforms, and sine-modulated pulses. In this paper, we present the results of a systematic study of the role of pulse shape in permeabilization, cell death, and molecular uptake. We have first compared the efficiency of 1-ms unipolar pulses with rise- and falltimes ranging from 2 to 100 μs, observing no statistically significant difference. We then compared the efficiency of triangular, sine, and rectangular bipolar pulses, and finally the efficiency of sine-modulated unipolar pulses with different percentages of modulation. We show that the results of these experiments can be explained on the basis of the time during which the pulse amplitude exceeds a certain critical value. 相似文献
9.
Following a 24-h exposure to a solution of polyethylene glycol 4 000 of a —12.66 bar osmotic potential the roots of maize ceased growing. The inhibition of growth was conditioned by the inhibition of cell elongation and division. The elongation of cells was substituted by their radial enlargement which took place both in the peripheral and central root parts. The cells either did not divide at all, or sporadic mitoses still occurred in the roots. The meristematic cells treated were highly vacuolized, chromatin condensation being observed in their nuclei. In contrast to growth processes, differentiation was stimulated: the formation of the secondary wall in protoxylem elements occurred at a shorter distance,i.e. 1 500–2 400 µm from the apex, in comparison with 4000–5 000 µm in the control, this evidently being caused not only by the inhibition of growth, but also by the capacity of cells to differentiate more rapidly. The changes induced by a 24-h exposure to water stress were of a reversible nature; however, a 48-h treatment brought about irreversible changes. 相似文献
10.
Clonal variation for tolerance to polyethylene glycol-induced water stress in cultured tomato cells 总被引:2,自引:1,他引:2
Cell clones were isolated from a population of cultured tomato (Lycopersicon esculentum Mill cv VFNT-cherry) cells and their tolerance to polyethylene glycol (PEG)-induced water stress was measured. Considerable variation for tolerance among the clones was found. Tolerance differences between clones appeared to be spontaneous and were different from tolerance differences between adapted and unadapted cells. Unlike adapted (selected by exposure to PEG) cells, cell clones retained their relative tolerance for many generations in the absence of selection pressure, and tolerance of both relatively tolerant and intolerant clones was very dependent on growth cycle stage and inoculum density. Analysis of subclones isolated from relatively tolerant and intolerant parent clones revealed that each parent clone gives rise to progeny with tolerances near the mean tolerance of both parents. However, progeny populations of both tolerant and intolerant parents are enriched with individuals with phenotypes nearer the mean response of their respective parent populations. When exposed to PEG, relatively tolerant and intolerant clones alike become adapted to the level of PEG to which they are exposed, and have the same phenotypic level of tolerance. Thus, selection by exposure to stress is unable to discriminate (on the basis of growth) between the innately tolerant and intolerant cell types within the population. This is indicated also by the fact that clones isolated from a population of cells adjusted to growth on 25% PEG do not show an enriched frequency of tolerant phenotypes when grown in the absence of PEG compared to the nonselected normal cell population which has never been adjusted to growth on PEG. 相似文献
11.
NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L 总被引:5,自引:0,他引:5
Atriplex halimus L. is a C4 xero-halophyte species well adapted to salt and drought conditions. To collect information on the physiological impact of low salt levels on their water-stress resistance, seedlings were exposed for 6 d to nutrient solution containing either 0% or 15% polyethylene glycol 10,000 (PEG), in the presence or in the absence of 50 mM NaCl. Similar experiments were performed with one PEG-resistant and one PEG-sensitive selected cell line exposed for 50 d to 0% or 15% PEG on standard Linsmaier and Skoog (LS) medium, on LS medium supplemented with 50 mM NaCl, or on Na+-free medium. NaCl mitigated the deleterious impact of PEG on growth of both whole plants and PEG-sensitive cell lines and improved the ability of stressed tissues to perform osmotic adjustment (OA). Water stress reduced CO2 net assimilation rates quantified in the presence of high CO2 and low O2 levels (A), stomatal conductance and transpiration, but NaCl improved water use efficiency of PEG-treated plants through its positive effect on A values, especially in young leaves. PEG increased the internal Na+ concentration. The resistant cell line accumulated higher concentration of Na+ than the PEG-sensitive one. The complete absence of Na+ in the medium endangered the survival of both cell lines exposed to PEG. Although Na+ by itself contributed only for a small part to OA, NaCl induced an increase in proline concentration and stimulated the synthesis of glycinebetaine in response to PEG in photosynthetic tissues. Soluble sugars were the main contributors to OA and increased when tissues were simultaneously exposed to PEG and NaCl compared with PEG alone, suggesting that Na+ may influence sugar synthesis and/or translocation. 相似文献
12.
Bioprocess and Biosystems Engineering - For the purification of biopharmaceutical proteins, liquid chromatography is still the gold standard. Especially with increasing product titers, drawbacks... 相似文献
13.
The mechanism of polyethylene glycol-induced natriuresis in rats: role of atrial natriuretic hormone
A putative role of atrial natriuretic hormone (ANH) in a polyethylene glycol (PEG) 200-induced natriuresis was examined in conscious Wistar rats. Low molecular weight PEG 200 (0.5 or 1.0 ml/100g body weight) was orally administered to rats by gavage. Urine was collected during a 3 hr test period and blood was obtained at the end of each experiment for measurement of ANH, PRA, clearance studies and for indirect indices of plasma volume. Urinary excretion of sodium and volume increased while plasma ANH concentrations were markedly decreased in a dose-related manner following PEG 200 administration. The osmotic clearance was also elevated following PEG 200 administration. No significant change was observed in any of the parameters following high molecular weight PEG 8000. The observed decrease in ANH was associated with an apparent contraction of plasma volume despite the increased serum osmolality. These data indicate that the ANH inhibitory influence of the decreased plasma volume takes precedence over the stimulatory effect of the hyperosmolality and the latter is primarily responsible for the increased osmotic clearance and natriuresis observed in this model. 相似文献
14.
15.
Acclimation of potato plants to polyethylene glycol-induced water deficit I. Photosynthesis and metabolism 总被引:5,自引:0,他引:5
The acclimation of photosynthesis and metabolism in response to water
deficit is characterized using hydroponically grown potato plants
(Solanum tuberosum cv. Désirée).
Plants were subjected to a reduced water potential of the nutrient solution
by adding 10% (w/v) PEG 6000. PEG-treated plants were retarded in growth.
Leaves which had been fully developed before the PEG treatment and leaves
grown during the PEG treatment showed different phenotypes and biochemical
and physiological properties. Photosynthesis of all leaves decreased during
the whole treatment. However, the decrease of photosynthesis in the two
types of leaves had different causes indicated by differences in their
metabolism. Leaves which were fully developed at the beginning of the PEG
treatment began to wilt starting from the leaf rim. The apoplastic ABA
content increased, coinciding with a decreased stomatal conductance.
Increased energy charge of the cells indicated impaired chloroplastic
metabolism, accompanied by a decrease of amounts of chloroplastic enzymes.
The apoplastic and the symplastic ABA content were increased during water
deficit and because ABA was concentrated in the cytosolic compartment it is
suggested that ABA is involved in decreasing photosynthetic enzyme contents
in old leaves. Young leaves, grown after the imposition of water deficit,
were smaller than control leaves and had a curly surface. In young leaves
apoplastic and cytosolic ABA contents were identical with control values.
Carboxylation efficiency of photosynthesis was decreased, but the water use
efficiency remained unchanged. Metabolic data of the photosynthetic
pathways indicate a down-regulation of chloroplastic metabolism. It is
concluded that in young leaves photosynthesis was non-stomatally limited.
This limitation was not caused by ABA. 相似文献
16.
We developed a theoretical model to investigate the interaction between charged lipid aggregates and a water solution containing ions and uncharged polymers. The local concentration of ions and polymer chains around the lipid aggregate have been treated as variational parameters which can be found by minimizing the total energy of the system. We divided the energy into the following main contributions: (a) Solvation energy of the ions. This depends on the local polymer concentration through the variation of the solvent dielectric properties. (b) Ions-lipid aggregate interactions. These depend on the local concentrations both of the ion cloud and polymer chains. (c) Conformational energy of the polymer. This term is related to the inhomogeneous spatial density of the polymer segments. Any direct interaction between the charged lipid surface and the polymer coils has been intentionally neglected. The minimization procedure leads to a non-linear Poisson-Boltzmann equation coupled with a non-linear algebraic equation describing the polymer distribution. The solution of the above system allows one to calculate the ions and polymer spatial distribution around the lipid aggregate. The knowledge of such parameters is useful to predict the effect of non-ionic polymers on the structure and properties of lipid assemblies such as the mean area per lipid molecule, the aggregation number, the critical micellar concentration and the formation of immiscibility gaps in mixed lipid systems. A possible involvement of these parameters into the fusion process between lipid vesicles is discussed. 相似文献
17.
Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures 总被引:2,自引:0,他引:2
Dune reed (DR) is the more tolerant ecotype of reed to environmental stresses than swamp reed (SR). Under osmotic stress mediated by polyethylene glycol (PEG-6000), the suspension culture of SR showed higher ion leakage, and more oxidative damage to the membrane lipids and proteins was observed compared with the relatively tolerant DR suspension culture. Treatment with sodium nitroprusside (SNP) can significantly alleviated PEG-induced ion leakage, thiobarbituric acid reactive substances (TBARS) and carbonyl contents increase in SR suspension culture. The levels of H(2)O(2) and O(2)(-) were reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were increased in both suspension cultures in the presence of SNP under osmotic stress, but lipoxygenase (LOX) activity was inhibited. 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific Nitric oxide (NO) scavenger, blocked the SNP-mediated protection. Depletion of endogenous NO with PTIO strongly enhanced oxidative damage in DR compared with that of PEG treatment alone, whereas had no effect on SR. Moreover, NO production increased significantly in DR while kept stable in SR under osmotic stress. Taken together, these results suggest that PEG induced NO release in DR but not SR can effectively protect against oxidative damage and confer an increased tolerance to osmotic stress in DR suspension culture. 相似文献
18.
Ultrastructural alterations in epidermal and mesophyll cells as well as variations in bulk leaf endogenous ABA and IAA concentrations were studied in PEG-treated plants of Fatsia japonica Decne & Plank. Under stress induced by PEG vesicles containing fibrous material and electron-dense bodies associated with plasma membranes were observed. Cytochemical examination indicated that electron-dense bodies corresponded to lipids and the fibrous material of the vesicles were polysaccharides. Chloroplasts, mitochondria, nuclei and Golgi apparatus also showed modifications. A strong relationship was found between increasing PEG-induced water stress, increasing endogenous ABA and ultrastructural changes. In relation with leaf ontogeny and ABA concentration a higher ABA level was observed in younger than in older leaves. The differences in the endogenous concentrations of indole-3-acetic acid are unclear, except after 7 days of PEG-treatment. The increase in the endogenous abscisic acid concentration could be related with the ultrastructural changes.Abbreviations ABA =
abscisic acid
- IAA =
indole-3-acetic acid
- PEG =
polyethylene glycol
- =
leaf water potential
- TEM =
transmission electron microscope 相似文献
19.
Antonella Leone Antonello Costa Marina Tucci Stefania Grillo 《Physiologia plantarum》1994,92(1):21-30
We compared long-term adaptation versus short-term or shock response of potato ( Solanum tuberosum ) cells to polyethylene glycol (PEG)-induced low water potential. Potato cells, which were allowed to adapt gradually to a decreasing water potential, were able to grow actively in a medium containing 20% PEG. In contrast, no appreciable gain in dry weight was observed in potato cells shocked by abrupt transfer to the same medium. PEG-adapted cells were also salt-tolerant, as they were able to proliferate in a medium supplemented with 200 m M NaCl. No visible ultrastructural changes of mitochondria or proplastids were observed in adapted cells at values of low water potential (about −2.0 MPa), which caused membrane disruption and appearance of lipid droplets in unadapted cells. ABA cellular content increased 5-fold in PEG-shocked cells but no significant increase was found in PEG-adapted cells. The intracellular content of free proline increased 12.5 times over the basal level in PEG-adapted cells and 6.5 times in PEG-shocked cells. As shown by in vivo protein labeling, shock conditions strongly inhibited protein synthesis, which was completely recovered in PEG-adapted cells. Osmotin, a protein associated with salt adaptation in tobacco, was constitutively expressed at a high level in PEG-adapted cells and accumulated in PEG-shocked cells only three days after the transfer in a medium supplemented with 20% PEG. Proline and osmotin accumulation were coincident with the increase in cellular ABA content in PEG-shocked cells, but not in PEG-adapted cells. These data suggest that this hormone is mainly involved in shock response rather than long-term adaptation. 相似文献
20.
Polyethylene glycol (PEG)-induced cell fusion is a promising method to transfer larger DNA from one cell to another than conventional genetic DNA transfer systems. The laboratory strain Bacillus subtilis 168 contains a restriction (R) and modification (M) system, BsuM, which recognizes the sequence 5'-CTCGAG-3'. To study whether the BsuM system affects DNA transfer by the PEG-induced cell fusion between R(+)M(+) and R(-)M(-) strains, we examined transfer of plasmids pHV33 and pLS32neo carrying no and eight BsuM sites, respectively. It was shown that although the transfer of pLS32neo but not pHV33 from the R(-)M(-) to R(+)M(+) cells was severely restricted, significant levels of transfer of both plasmids from the R(+)M(+) to R(-)M(-) cells were observed. The latter result shows that the chromosomal DNA in the R(-)M(-) cell used as the recipient partially survived restriction from the donor R(+)M(+) cell, indicating that the BsuM R(-)M(-) strain is useful as a host for accepting DNA from cells carrying a restriction system(s). Two such examples were manifested for plasmid transfer from Bacillus circulans and Bacillus stearothermophilus strains to a BsuM-deficient mutant, B. subtilis RM125. 相似文献