首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
IS256 is the founding member of the IS256 family of insertion sequence (IS) elements. These elements encode a poorly characterized transposase, which features a conserved DDE catalytic motif and produces circular IS intermediates. Here, we characterized the IS256 transposase as a DNA-binding protein and obtained insight into the subdomain organization and functional properties of this prototype enzyme of IS256 family transposases. Recombinant forms of the transposase were shown to bind specifically to inverted repeats present in the IS256 noncoding regions. A DNA-binding domain was identified in the N-terminal part of the transposase, and a mutagenesis study targeting conserved amino acid residues in this region revealed a putative helix-turn-helix structure as a key element involved in DNA binding. Furthermore, we obtained evidence to suggest that the terminal nucleotides of IS256 are critically involved in IS circularization. Although small deletions at both ends reduced the formation of IS circles, changes at the left-hand IS256 terminus proved to be significantly more detrimental to circle production. Taken together, the data lead us to suggest that the IS256 transposase-mediated circularization reaction preferentially starts with a sequence-specific first-strand cleavage at the left-hand IS terminus.IS256 is an insertion sequence widespread in the genomes of multiresistant enterococci and staphylococci (3). The element, which is 1,324 bp in size, consists of a single open reading frame encoding a transposase protein flanked by noncoding regions (NCRs) harboring imperfect inverted repeats (IRs) (see Fig. Fig.1A).1A). IS256 occurs in multiple free copies in its host genomes but is also known to form the ends of composite transposon Tn4001 conferring aminoglycoside resistance (29). In Staphylococcus epidermidis, IS256 has been identified as a typical marker of hospital-acquired multiresistant and biofilm-forming clones causing opportunistic infections in immunocompromised patients (11, 20-22, 26, 34). The element has been shown to trigger heterogeneous biofilm expression by reversible transposition into biofilm-associated genes and regulators (4, 5, 19, 49, 56). Also, IS256 has the capacity to influence antibiotic resistance, either by insertion into regulatory genes or by modulating antibiotic resistance gene expression through formation of strong hybrid promoters resulting from transposition into the neighborhood of antibiotic resistance genes (6, 18, 31, 32). Finally, multiple genomic IS256 copies may serve as crossover points for homologous recombination events and thereby play an important role in genome flexibility, adaptation, and evolution of staphylococcal and enterococcal genomes (29, 42, 55).Open in a separate windowFIG. 1.IS256 transposase binding to IS termini. (A) Genetic organization of IS256. The transposase gene (tnp) is flanked by NCRs that harbor imperfect IRs (IRL and IRR) at the ends of the element. The nucleotide sequence of the IRs is indicated by uppercase boldface letters, with nucleotide numbering referring to GenBank accession no. M18086. Insertion of IS256 into the S. epidermidis icaC gene on plasmid pIL2 (27) is shown, and black boxes mark the 8-bp target site duplications (TSDs) generated upon transposition of the element. Black bars at the top indicate localizations of DNA fragments used in the EMSAs presented in panels B to D. (B to D) EMSAs of purified IS256 transposase protein (CBP-Tnp) with various IS256-specific DNA fragments. A 15.5 nM concentration of an IS terminus (left)-carrying DNA fragment (B) or an IS terminus (right)-carrying DNA-fragment (C), as well as an interal IS256 fragment (D), were used with increasing amounts of protein. All experiments were performed in the presence of unspecific competitor [50 μg of poly(dI-dC) ml−1]. Molar ratios between DNA and protein comprised a range of 1:3 (50 nM CBP-Tnp) to 1:52 (800 nM CBP-Tnp).Given its important biological role, it is surprising that very little is known about the molecular function of IS256 and its lifestyle. Empirical analyses of IS256 insertion sites in various bacterial genomes and loci did not reveal nucleotide sequence specificity for target site selection (3, 29, 56). Typically, IS256 generates 8- or 9-bp target site duplications (TSDs) upon transposition that are caused by staggered nicks of the target DNA and refill of the resulting gaps by the host repair system (43). In the course of phase variation events, IS256 TSDs can be completely removed, with the original host sequence being restored (56). Such precise IS256 excisions are caused by an illegitimate recombination event that requires fully intact TSDs but no functional IS256 transposase (14). IS256 transposition itself was found to involve the formation of double-stranded circular IS256 molecules in which the insertion sequence (IS) ends abut, bridged by a few base pairs of host DNA originating from the original insertion site (27, 39). IS256 circle formation is a strictly transposase-dependent process and IS circles are regarded as transposition intermediates which are likely to be relinearized during transposition. However, details of the transposition reaction, including circle formation, putative relinearization, target site selection, and insertion of the element are far from being understood at the molecular level. We experimentally addressed here, for the first time for a bacterial transposase of the IS256 family, the DNA-binding properties of this protein. We identified a DNA-binding domain in the N-terminal region of the protein. The domain contains a putative classical helix-turn-helix (HTH) motif that is demonstrated to be involved in sequence-specific interactions of the IS256 transposase with the IRs present in the NCRs of the element. Moreover, we suggest a role for the terminal nucleotides of the IS256 nucleotide sequence in first-strand cleavage and subsequent circularization of the element.  相似文献   

3.
Vertebrate segmentation is regulated by the “segmentation clock”, which drives cyclic expression of several genes in the caudal presomitic mesoderm (PSM). One such gene is Lunatic fringe (Lfng), which encodes a modifier of Notch signalling, and which is also expressed in a stripe at the cranial end of the PSM, adjacent to the newly forming somite border. We have investigated the functional requirements for these modes of Lfng expression during somitogenesis by generating mice in which Lfng is expressed in the cranial stripe but strongly reduced in the caudal PSM, and find that requirements for Lfng activity alter during axial growth. Formation of cervical, thoracic and lumbar somites/vertebrae, but not sacral and adjacent tail somites/vertebrae, depends on caudal, cyclic Lfng expression. Indeed, the sacral region segments normally in the complete absence of Lfng and shows a reduced requirement for another oscillating gene, Hes7, indicating that the architecture of the clock alters as segmentation progresses. We present evidence that Lfng controls dorsal-ventral axis specification in the tail, and also suggest that Lfng controls the expression or activity of a long-range signal that regulates axial extension.  相似文献   

4.
5.
6.
ISPst9 is an ISL3-like insertion sequence (IS) that was recently described in the naphthalene-degrading organism Pseudomonas stutzeri strain AN10. In this paper we describe a novel strong IS regulation stimulus; transposition of ISPst9 is induced in all P. stutzeri AN10 cells after conjugative interaction with Escherichia coli. Thus, we observed that in all P. stutzeri AN10 cells that received genetic material by conjugation the ISPst9 genomic dose and/or distribution was changed. Furthermore, ISPst9 transposition was also observed when P. stutzeri AN10 cells were put in contact with the plasmidless conjugative strain E. coli S17-1λpir, but not when they were put in contact with E. coli DH5α (a nonconjugative strain). The mechanism of ISPst9 transposition was analyzed, and transposition was shown to proceed by excision from the donor DNA using a conservative mechanism, which generated 3- to 10-bp deletions of the flanking DNA. Our results indicate that ISPst9 transposes, forming double-stranded DNA circular intermediates consisting of the IS and a 5-bp intervening DNA sequence probably derived from the ISPst9 flanking regions. The kinetics of IS circle formation are also described.  相似文献   

7.
8.
9.
10.
Scoliosis is a condition that involves an abnormal curvature and deformity of the spinal vertebrae. The genetic background and key gene for congenital scoliosis in humans are still poorly understood. Ishibashi rats (ISR) have congenital malformation of the lumbar vertebrae leading to kyphoscoliosis similar to that seen in humans. To understand the pathogenesis of congenital scoliosis, we have studied the abnormality of vertebral formation and the associated gene expression in ISR. Almost all ISR showed kyphosis or scoliosis of the lumbar vertebrae. In ISR with severe kyphosis, some vertebral disks were missing and some vertebral bodies were fused. Of the ISR, 27% showed hemi-lumbarization of lumbar and sacral vertebrae. Homeotic transformation of the first sacral vertebra into the seventh lumbar vertebra and the resultant loss of the fourth sacral vertebra were seen in half of the ISR. We also found unilateral fusions and deformities of primary ossification centers of the lumbar vertebral column in fetal ISR. Moreover, we observed that the expression levels of Hox10 and Hox11 paralogs in lumbo-sacral transitional areas of ISR were extremely low compared with those of normal rats. These results suggest that fusion of primary ossification centers in lumbar vertebrae in the embryonic period causes scoliosis and kyphosis and that Hox genes are involved in the occurrence of homeotic transformation in lumbo-sacral vertebrae of congenital kyphoscoliotic ISR.  相似文献   

11.
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.Mobile DNA elements have been described in most organisms and represent a considerable proportion of their genetic material. These elements play an important role in the evolution of the host genome due to their capacities to generate DNA rearrangements and influence the expression of neighboring genes. Their ability to form compound transposons contributes to the sequestering and dispersion of accessory genes, such as those specifying resistance to antibiotics, virulence, and various catabolic activities. The simplest mobile elements are the bacterial insertion sequences (ISs), which typically harbor one or two open reading frames (ORF) coding for the transposase (Tpase). More than 2,400 ISs have been described and classified into families (IS Finder, http://www-is.biotoul.fr/) on the basis of similarities in their genetic organization and Tpases (30). The terminal inverted repeats (IRs) are essential for the transposition of most ISs. The IRs, together with the Tpase, form a complex where the cleavage and strand transfer reactions occur. The IRs generally contain two functional modules: the internal region serves as the binding site of Tpase, while the terminal part is required for DNA cleavage and the strand transfer process (2). Besides these principal cis-acting elements, some ISs carry additional regulatory DNA sequences in the IRs or in the subterminal regions (18).The IS30 family currently comprises more than 80 elements distributed throughout the Gram-positive and Gram-negative bacteria and the Archaea (IS Finder, http://www-is.biotoul.fr). IS30 (1, 5), the founding element of the family, is 1,221 bp long and has 26-bp imperfect IRs (the left end of the IR [IRL] and the right end of the IR [IRR]; Fig. Fig.1A)1A) and one ORF with a coding capacity for a 44.3-kDa Tpase. The element has a preference for two distinct types of target sequences: the natural hot spots (HSs), characterized by a 24-bp symmetric consensus (23), and the IRs of the element itself (21, 22). Potential helix-turn-helix motifs (HTH) responsible for HS and IR targeting are located in the N-terminal region of the Tpase (19). While the first motif, HTH1, is required only for transposition into the HS sequences, the conserved H-HTH2 motif is essential for both IR and HS targeting (15, 19).Open in a separate windowFIG. 1.Transposition assays for comparing the IS30-based transposons composed of simple IRs. (A) Comparison of the IS30 IR sequences. Dots indicate matching bases. (B) Schematic representation of the intermolecular transposition pathway. The graph shows the two major steps characteristic for IS30 transposition (steps 1 and 2). The transposon donor plasmid and its derivative, the circular transposon (thin line), carry the 26-bp IRs of IS30 (boxes with open and filled triangles representing IRL and IRR, respectively). The Cmr gene flanking the transposon in the donor plasmid is shown as a gray box. The target plasmid (dotted line) carries the GOHS hot spot sequence (cross-hatched box). (C) Transposition frequencies of IS30-based transposons with different combinations of the IRs. The graph shows the overall frequency of transposition into the hot spot (steps 1 and 2) and the frequency of the major steps assayed separately. Data were obtained from at least three parallel experiments.IS30 transposition occurs through two major steps (14, 24) (Fig. (Fig.1B).1B). The first is the formation of an active intermediate by joining of the IRs. This process involves the Tpase-catalyzed cleavage of one strand at the 3′ IS end, which then attacks the same strand 2 bp outside the other IR. This strand transfer generates a single-strand bridge between the ends and leads to a figure-eight structure (33). This active transposition intermediate carrying the joined IRs probably proceeds via replicative resolution, as described for IS911 (11, 25) and IS2 (16). The resolution can lead to the circularization of a single IS or to the formation of a head-to-tail repeat of two IS30 copies. In the second step of transposition, the active forms interact with the target DNA, resulting in the known transposition products: simple insertion, deletion, inversion, or replicon fusion (14, 24).In this work, we describe the modularity of the IR ends of IS30 by analyzing several mutants. According to our results, the IS30 IRs can be divided into functional regions that are differently involved in the main transposition steps. We show that positions 2 and 3 play a pivotal role in cleavage of the ends and, consequently, in their donor function. While the terminal part (1 to 17 bp) of the IRs is indispensable for both major steps, the internal region, i.e., the binding site for the N-terminal part of Tpase (20 to 26 bp), appears to be required only for the junction formation. Although the exact role of the terminal part of IRs is less clear, several mutations in this region considerably affected both the junction formation and integration. The fact that the internal IR region is not involved in the integration suggests that the Tpase binds to other sequences during this reaction.  相似文献   

12.
Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

13.
Summary A revised physical map of the -haemolysin plasmid pHly152 has been constructed. The known position of the hly genes in the restriction map of pHly152 allowed us to locate in it a direct repeat of IS elements flanking the hly genes of pHly152. These elements are IS92L, which is a derivative of the previously characterised element IS91 (1.85 kb) by insertion of a sequence of 1.2 kb, and IS92R, an element related to IS91 by a deletion of 0.7 kb and substitution of a 0.2 kb sequence of IS91 by a 1.2 kb heterologous sequence. IS92L is, in turn, flanked by an inverted repetition of sequences of 1.4 kb. These and previously published data strongly suggest that the hly genes spread at some time in evolution by means of the recombinational activity of IS91-like elements.  相似文献   

14.
A new IS element, IS1062, related to the enterococcal IS elements IS6770 and IS1252, was detected in the 3-terminus of the surface exclusion gene,sep1, of sex pheromone plasmid pPD1 inEnterococcus faecalis. pPD1-bearing cells lack the surface exclusion function, probably as a consequence of this insertion. Analysis of pAD1 and pPD1 sequences (7.5 kb and 2.7 kb, respectively) downstream of their aggregation substance genes revealed no similarity in these DNA regions. Detailed DNA/DNA hybridization studies using DNA probes specific for various pAD1-encoded genes needed for plasmid transfer indicated that the sex pheromone plasmids have evolved by repeated recombination and insertion of diverse transposable elements which presumably account for recent acquisition of antibiotic resistances.  相似文献   

15.
We describe the first functional insertion sequence (IS) element in Lactobacillus plantarum. ISLpl1, an IS30-related element, was found on the pLp3 plasmid in strain FB335. By selection of spontaneous mutants able to grow in the presence of uracil, it was demonstrated that the IS had transposed into the uracil phosphoribosyltransferase-encoding gene upp on the FB335 chromosome. The plasmid-carried IS element was also sequenced, and a second potential IS element was found: ISLpl2, an IS150-related element adjacent to ISLpl1. When Southern hybridization was used, the copy number and genome (plasmid versus chromosome) distribution data revealed different numbers and patterns of ISLpl1-related sequences in different L. plantarum strains as well as in Pediococcus strains. The ISLpl1 pattern changed over many generations of the strain L. plantarum NCIMB 1406. This finding strongly supports our hypothesis that ISLpl1 is a mobile element in L. plantarum. Database analysis revealed five quasi-identical ISLpl1 elements in Lactobacillus, Pediococcus, and Oenococcus strains. Three of these elements may be cryptic IS, since point mutations or 1-nucleotide deletions were found in their transposase-encoding genes. In some cases, ISLpl1 was linked to genes involved in cold shock adaptation, bacteriocin production, sugar utilization, or antibiotic resistance. ISLpl1 is transferred among lactic acid bacteria (LAB) and may play a role in LAB genome plasticity and adaptation to their environment.  相似文献   

16.
Insertion sequence (IS) element ISRLdTAL1145-1 from Rhizobium sp. (Leucaena diversifolia) strain TAL 1145 was entrapped in the sacB gene of the positive selection vector pUCD800 by insertional inactivation. A hybridization probe prepared from the whole 2.5-kb element was used to determine the distribution of homologous sequences in a diverse collection of 135 Rhizobium and Bradyrhizobium strains. The IS probe hybridized strongly to Southern blots of genomic DNAs from 10 rhizobial strains that nodulate both Phaseolus vulgaris (beans) and Leucaena leucocephala (leguminous trees), 1 Rhizobium sp. that nodulates Leucaena spp., 9 R. meliloti (alfalfa) strains, 4 Rhizobium spp. that nodulate Sophora chrysophylla (leguminous trees), and 1 nonnodulating bacterium associated with the nodules of Pithecellobium dulce from the Leucaena cross-inoculation group, producing distinguishing IS patterns for each strain. Hybridization analysis revealed that ISRLdTAL1145-1 was strongly homologous with and closely related to a previously isolated element, ISRm USDA1024-1 from R. meliloti, while restriction enzyme analysis found structural similarities and differences between the two IS homologs. Two internal segments of these IS elements were used to construct hybridization probes of 1.2 kb and 380 bp that delineate a structural similarity and a difference, respectively, of the two IS homologs. The internal segment probes were used to analyze the structures of homologous IS elements in other strains. Five types of structural variation in homolog IS elements were found. The predominate IS structural type naturally occurring in a strain can reasonably identify the strain's cross-inoculation group relationships. Three IS structural types were found in Rhizobium species that nodulate beans and Leucaena species, one of which included the designated type IIB strain of R. tropici (CIAT 899). Weak homology to the whole IS probe, but not with the internal segments, was found with two Bradyrhizobium japonicum strains. The taxonomic and ecological implications of the distribution of ISRLdTAL1145-1 are discussed.  相似文献   

17.
New material of Natchitochia from the Bartonian Archusa Marl Member is described here, including thoracic, lumbar, sacral, and caudal vertebrae, an innominate, proximal femur, and pedal? phalanx. The vertebrae and innominate are similar to those of Qaisracetus and Georgiacetus. The structure of the caudal vertebrae support previous observations that as sacral vertebrae disconnect from the sacrum, they become caudalized, developing hemal processes on the posteroventral margins of the bodies, reminiscent of chevron bones associated with true caudal vertebrae. The innominate of Natchitochia shares an elongate ilium and pubis with Qaisracetus and Georgiacetus, which differ from the innominata of the more apomorphic archaeocetes. Comparison of archaeocete innominata and sacra in a phylogenetic context indicates that the apomorphic sacrum composed of 4 vertebrae (Pakicetus, Ambulocetus, Rodhocetus, Maiacetus) was reduced to 3 (Qaisracetus) to 2 (Protocetus?, Natchitochia) to 0 (Georgiacetus, Basilosauridae), while the innominata remained robust, supporting a large hind limb until the origin of the Basilosauridae. In Georgiacetus, the innominate is large but detached from the vertebral column, preventing the use of the hind limb in terrestrial locomotion. More crownward cetaceans for which the innominate is known display greatly reduced innominata and hind limbs are disconnected from the vertebral column.  相似文献   

18.
The insertion sequence ISRm8 was identified by sequence analysis of the cryptic plasmid pRmeGR4b of Sinorhizobium meliloti GR4. ISRm8 is 1451 bp in length and carries 22/24-bp terminal imperfect inverted repeats with seven mismatches and a direct target site duplication of 3 bp. ISRm8 carries a unique open reading frame whose putative protein showed significant similarity to the insertion sequences IS1357 and IS1452, isolated from Methylobacterium sp. and Acetobacter pasteurianus, respectively. Two copies of this IS element were found in strain GR4; one of them is linked to plasmid pRmeGR4b, whereas the other is localized out of the non-pSym plasmids. In S. meliloti field populations ISRm8 shows a limited distribution (50% of the strains tested carry the IS element), with a copy number ranging from 1 to 6.  相似文献   

19.
In adult humans, active bone marrow is confined to the proximal portion of the skeleton. Huggins and Blocksom (J. Exp. Med., 64: 253, '36) concluded that a high temperature is needed for hematopoiesis in rats. However, precise thermal regulation of human marrow was not found (Petrakis, J. Appl. Physiol., 4: 549, '52). Because these experiments made on the rat tail are the basis for a commonly accepted hypothesis attempting to explain marrow distribution in man, it was considered of importance to re-examine the caudal vertebra model upon which the temperature-gradient hypothesis is based. The sacral and coccygeal vertebrae were examined in rats, mice and humans with respect to marrow cellularity and temperature. In rats and mice and man it was observed that the transition between hematopoietically-active and inactive (fatty) vertebral marrow cavities is abrupt, occurring at the level of the first and second caudal and coccygeal vertebrae. All vertebrae distal to this point have fatty marrow. Of significance was the finding that the vertebral and coccygeal temperatures, as measured with a thermister needle, remain unaltered over this area of changing cellular activity. These anatomical and thermal observations of the caudal vertebrae of rats, mice, and humans indicate that the use of the tail as an experimental model does not support the hypothesis that temperature is a primary factor in the physiological maintenance of hematopoiesis in bone marrow. The possible relationship of hematopoietic activity to developmental and other factors peculiar to the caudal vertebra model is under study.  相似文献   

20.
A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号