首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Purpose

We tested the hypothesis that expression of microRNAs (miRNAs) in cancer tissue can predict effectiveness of bevacizumab added to capecitabine and oxaliplatin (CAPEOX) in patients with metastatic colorectal cancer (mCRC).

Experimental Design

Patients with mCRC treated with first line CAPEOX and bevacizumab (CAPEOXBEV): screening (n = 212) and validation (n = 121) cohorts, or CAPEOX alone: control cohort (n = 127), were identified retrospectively and archival primary tumor samples were collected. Expression of 754 miRNAs was analyzed in the screening cohort using polymerase chain reaction (PCR) arrays and expression levels were related to time to disease progression (TTP) and overall survival (OS). Significant miRNAs from the screening study were analyzed in all three cohorts using custom PCR arrays. In situ hybridization (ISH) was done for selected miRNAs.

Results

In the screening study, 26 miRNAs were significantly correlated with outcome in multivariate analyses. Twenty-two miRNAs were selected for further study. Higher miR-664-3p expression and lower miR-455-5p expression were predictive of improved outcome in the CAPEOXBEV cohorts and showed a significant interaction with bevacizumab effectiveness. The effects were strongest for OS. Both miRNAs showed high expression in stromal cells. Higher expression of miR-196b-5p and miR-592 predicted improved outcome regardless of bevacizumab treatment, with similar effect estimates in all three cohorts.

Conclusions

We have identified potentially predictive miRNAs for bevacizumab effectiveness and additional miRNAs that could be related to chemotherapy effectiveness or prognosis in patients with mCRC. Our findings need further validation in large cohorts, preferably from completed randomized trials.  相似文献   

2.
3.

Background

Recent reports have indicated that microRNAs (miRNAs) play a critical role in malignancies, and regulations in the progress of adult leukemia. The role of miRNAs in pediatric leukemia still needs to be established. The purpose of this study was to investigate the aberrantly expressed miRNAs in pediatric acute leukemia and demonstrate miRNA patterns that are pediatric-specific and prognostic parameter-associated.

Methodology/Principal Findings

A total of 111 pediatric bone marrow samples, including 99 patients and 12 normal donors, were enrolled in this study. Of those samples, 36 patients and 7 normal samples were used as a test cohort for the evaluation of miRNA profiling; 63 pediatric patients and 5 normal donors were used as a validation cohort to confirm the miRNA differential expression. Pediatric ALL- and AML-specific microRNA expression patterns were identified in this study. The most highly expressed miRNAs in pediatric ALL were miR-34a, miR-128a, miR-128b, and miR-146a, while the highly expressed miRNAs in pediatric AML were miR-100, miR-125b, miR-335, miR-146a, and miR-99a, which are significantly different from those reported for adult CLL and AML. miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2 patients, respectively. Importantly, we identified a “miRNA cascade” associated with central nervous system (CNS) relapse in ALL. Additionally, miRNA patterns associated with prednisone response, specific risk group, and relapse of ALL were also identified.

Conclusions/Significance

There are existing pediatric-associated and prognostic parameter-associated miRNAs that are independent of cell lineage and could provide therapeutic direction for individual risk-adapted therapy for pediatric leukemia patients.  相似文献   

4.
The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.  相似文献   

5.
6.
7.
To comparatively analyze the human microRNA (miRNA) profiles between spontaneous decidualized menstrual endometrium and early pregnancy decidua by an in-depth sequencing of miRNAs. The specific miRNAs expressed at conception might be involved in pregnancy establishment and expression of let-7f-5p and let-7g-5p was experimentally up-regulated or inhibited to assess the effect on the expression of IGF2BP-1 and IGF2R in vitro, respectively. Samples of endometria and deciduas were obtained from 25 women who suffered from tubal or male factor subfertility and from 35 early pregnant women who underwent pregnancy termination at 6–8 weeks gestation were irrespectively collected and comparatively analyzed by miRNA sequencing and differential expression of known and novel miRNAs was analyzed using bioinformatics. The 2042 miRNA expression was analyzed in the study and the differential expression of six miRNAs was validated by qRT-PCR. The expression of four miRNAs in decidua samples was down-regulated (miR-34c, miR-92a, miR-181a-5p, and miR-191), whereas the expression of miR-10a-5p and let-7f-5p was significantly up-regulated. The expression of IGF2BP-1 and IGF2R declined and increased with overexpression and inhibition of let-7f-5p and let-7g-5p, respectively. Changes in the expression of particular miRNAs might play a role in the physiology of decidualization following successful embryo implantation, ultimately resulting in continuous decidualization.  相似文献   

8.
Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians—an ethnic population characterized to represent ‘Asian Indian phenotype’ known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a ‘New Lead’ in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.  相似文献   

9.
Over the last few years, circulating microRNAs (miRNAs) have emerged as promising novel and minimally invasive markers for various diseases, including cancer. We already showed that certain miRNAs are deregulated in the plasma of breast cancer patients when compared to healthy women. Herein we have further explored their potential to serve as breast cancer early detection markers in blood plasma. Circulating miR-127-3p, miR-376a and miR-652, selected as candidates from a miRNA array-based screening, were found to be associated with breast cancer for the first time (n = 417). Further we validated our previously reported circulating miRNAs (miR-148b, miR-376c, miR-409-3p and miR-801) in an independent cohort (n = 210) as elevated in the plasma of breast cancer patients compared to healthy women. We described, for the first time in breast cancer, an over-representation of deregulated miRNAs (miR-127-3p, miR-376a, miR-376c and miR-409-3p) originating from the chromosome 14q32 region. The inclusion of patients with benign breast tumors enabled the observation that miR-148b, miR-652 and miR-801 levels are even elevated in the plasma of women with benign tumors when compared to healthy controls. Furthermore, an analysis of samples stratified by cancer stage demonstrated that miR-127-3p, miR-148b, miR-409-3p, miR-652 and miR-801 can detect also stage I or stage II breast cancer thus making them attractive candidates for early detection. Finally, ROC curve analysis showed that a panel of these seven circulating miRNAs has substantial diagnostic potential with an AUC of 0.81 for the detection of benign and malignant breast tumors, which further increased to 0.86 in younger women (up to 50 years of age).  相似文献   

10.
To assess the value of exosomal miRNAs as biomarkers for Alzheimer disease (AD), the expression of microRNAs was measured in a plasma fraction enriched in exosomes by differential centrifugation, using Illumina deep sequencing. Samples from 35 persons with a clinical diagnosis of AD dementia were compared to 35 age and sex matched controls. Although these samples contained less than 0.1 microgram of total RNA, deep sequencing gave reliable and informative results. Twenty miRNAs showed significant differences in the AD group in initial screening (miR-23b-3p, miR-24-3p, miR-29b-3p, miR-125b-5p, miR-138-5p, miR-139-5p, miR-141-3p, miR-150-5p, miR-152-3p, miR-185-5p, miR-338-3p, miR-342-3p, miR-342-5p, miR-548at-5p, miR-659-5p, miR-3065-5p, miR-3613-3p, miR-3916, miR-4772-3p, miR-5001-3p), many of which satisfied additional biological and statistical criteria, and among which a panel of seven miRNAs were highly informative in a machine learning model for predicting AD status of individual samples with 83–89% accuracy. This performance is not due to over-fitting, because a) we used separate samples for training and testing, and b) similar performance was achieved when tested on technical replicate data. Perhaps the most interesting single miRNA was miR-342-3p, which was a) expressed in the AD group at about 60% of control levels, b) highly correlated with several of the other miRNAs that were significantly down-regulated in AD, and c) was also reported to be down-regulated in AD in two previous studies. The findings warrant replication and follow-up with a larger cohort of patients and controls who have been carefully characterized in terms of cognitive and imaging data, other biomarkers (e.g., CSF amyloid and tau levels) and risk factors (e.g., apoE4 status), and who are sampled repeatedly over time. Integrating miRNA expression data with other data is likely to provide informative and robust biomarkers in Alzheimer disease.  相似文献   

11.

Introduction

MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls.

Methods

We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718).

Results

Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202.

Conclusions

MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use.  相似文献   

12.
血管生成素是一个重要的促血管生成因子,在细胞增殖、迁移和凋亡等过程中均发挥重要作用,但其具体的分子机制尚待阐明.miRNA是一类长约22 nt的小RNA,在转录后水平调控基因的表达,广泛参与各种生物学过程.本文探索了可直接调控血管生成素表达的miRNA,希望为阐明血管生成素的作用机制提供线索.首先,我们利用数据库预测得到8个可能靶向结合血管生成素mRNA 3′端非编码区的miRNA;然后,用实验方法验证它们与血管生成素的靶向关系,发现miR-1208、miR-196b、miR-296、miR-409-3p、miR-570和miR-641这6个miRNA可以不同程度地抑制血管生成素的mRNA和蛋白质表达水平,但只有miR-196b、miR-296、miR-409-3p和miR-641可以直接结合血管生成素mRNA的3′端非编码区;进而,在血管内皮细胞中分别过表达这4个miRNA,发现miR-196b、miR-409-3p和miR-641可以抑制血管内皮细胞的细胞增殖,而miR-196b、miR-296和miR-409-3p可以抑制血管内皮细胞的管腔形成.以上结果表明,细胞内有多个miRNA调控血管生成素的表达,它们可能协调调节血管生成,抑或在血管生成的不同阶段发挥作用.我们的工作还为“一种mRNA可被多种microRNA调节,而一种microRNA可调节多种mRNA”假说提供了部分证据.  相似文献   

13.

Background

The biomarker value of circulating microRNAs (miRNAs) has been extensively addressed in patients with acute coronary syndrome. However, prognostic performances of miRNAs in patients with acute heart failure (AHF) has received less attention.

Methods

A test cohort of 294 patients with acute dyspnea (236 AHF and 58 non-AHF) and 44 patients with stable chronic heart failure (CHF), and an independent validation cohort of 711 AHF patients, were used. Admission levels of miR-1/-21/-23/-126/-423-5p were assessed in plasma samples.

Results

In the test cohort, admission levels of miR-1 were lower in AHF and stable CHF patients compared to non-AHF patients (p = 0.0016). Levels of miR-126 and miR-423-5p were lower in AHF and in non-AHF patients compared to stable CHF patients (both p<0.001). Interestingly, admission levels of miR-423-5p were lower in patients who were re-admitted to the hospital in the year following the index hospitalization compared to patients who were not (p = 0.0001). Adjusted odds ratio [95% confidence interval] for one-year readmission was 0.70 [0.53–0.93] for miR-423-5p (p = 0.01). In the validation cohort, admission levels of miR-423-5p predicted 1-year mortality with an adjusted odds ratio [95% confidence interval] of 0.54 [0.36–0.82], p = 0.004. Patients within the lowest quartile of miR-423-5p were at high risk of long-term mortality (p = 0.02).

Conclusions

In AHF patients, low circulating levels of miR-423-5p at presentation are associated with a poor long-term outcome. This study supports the value of miR-423-5p as a prognostic biomarker of AHF.  相似文献   

14.
To reduce treatment of indolent prostate cancer (PCa), biomarkers are needed to improve identification of patients with a low-risk of having aggressive disease. Over-treatment of these patients occurs because of uncertainty in the aggressiveness of the entire tumor based on the biopsies, which do not accurately sample multifocal tumors. Circulating microRNAs (miRNAs) are stable serum markers and differential miRNA levels occur in men with PCa. The goal of this study was to identify circulating miRNAs that were associated with aggressive or indolent PCa. We measured circulating miRNAs in 150 patients prior to surgery and compared the miRNA levels to the pathology of the entire radical prostatectomy specimen. For this study we used an exceptionally well-characterized cohort of patients who had benign prostatic hyperplasia (BPH), low-grade or high-grade PCa. Low-grade was defined as patients with 100% Gleason grade 3 tumor as determined by step-wise sectioning. High-grade PCa patients had 30-90% Gleason grade 4+5 in the tumor. BPH patients had at least two biopsies negative for PCa. Twenty one miRNAs were selected for analysis. The miRNAs were quantified by RT-qPCR and analyzed by logistic regression. High levels of 14 miRNAs were exclusively present in the serum from patients with low-grade PCa or BPH, compared to men with high-grade PCa who had consistently low levels. The expression levels of the 14 miRNAs were combined into a “miR Score” which had a negative predictive value (NPV) of 0.939 to predict absence of high-grade PCa among PCa and BPH patients. Biochemical recurrence (BCR) was known for the PCa patients and a combined “miR Risk Score” accurately classified a subset of patients with low risk of BCR (NPV 0.941). In summary, measurement of serum miRNAs may have pre-surgical utility in combination with clinical risk calculators to identify patients with low risk of harboring aggressive PCa.  相似文献   

15.
RT-qPCR is the accepted technique for the quantification of microRNA (miR) expression: however, stem-loop RT-PCR, the most frequently used method for quantification of miRs, is time- and reagent-consuming as well as inconvenient for scanning. We established a new method called ‘universal stem-loop primer’ (USLP) with 8 random nucleotides instead of a specific sequence at the 3′ end of the traditional stem-loop primer (TSLP), for screening miR profile and to semi-quantify expression of miRs. Peripheral blood samples were cultured with phytohaemagglutinin (PHA), and then 87 candidate miRs were scanned in cultured T cells. By USLP, our study revealed that the expression of miR-150-5p (miR-150) decreased nearly 10-fold, and miR-155-5p (miR-155) increased more than 7-fold after treated with PHA. The results of the dissociation curve and gel electrophoresis showed that the PCR production of the USLP and TSLP were specificity. The USLP method has high precision because of its low ICV (ICV<2.5%). The sensitivity of the USLP is up to 103 copies/µl miR. As compared with the TSLP, USLP saved 75% the cost of primers and 60% of the test time. The USLP method is a simple, rapid, precise, sensitive, and cost-effective approach that is suitable for screening miR profiles.  相似文献   

16.
17.
18.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27CD11b+) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR‐l8la‐5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR‐181a‐5p inhibited NK cell development in vitro and in vivo. Furthermore, miR‐181a‐5p is highly conserved in mice and human. MiR‐181a‐5p promoted the production of IFN‐γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR‐181a‐5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR‐181a‐5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.  相似文献   

19.
Epithelial ovarian cancer (EOC) is the most common gynecologic malignancy. To identify the micro-ribonucleic acids (miRNAs) expression profile in EOC tissues that may serve as a novel diagnostic biomarker for EOC detection, the expression of 1722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian cancer samples was profiled by using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. A ten-microRNA signature (hsa-miR-1271-5p, hsa-miR-574-3p, hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-182-3p, hsa-miR-141-5p, hsa-miR-130b-5p, and hsa-miR-135b-3p) was identified to be able to distinguish human ovarian cancer tissues from normal tissues with 97% sensitivity and 92% specificity. Two miRNA clusters of miR183-96-183 (miR-96-5p, and miR-182, miR183) and miR200 (miR-141-5p, miR200a, b, c and miR429) are significantly up-regulated in ovarian cancer tissue samples compared to those of normal tissue samples, suggesting theses miRNAs may be involved in ovarian cancer development.  相似文献   

20.

Introduction

Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting.

Methods

Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated.

Results

Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80.

Conclusion

This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号