首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

2.

Background and Aims

Serotiny is common in the genus Banksia, so any seed collection is likely to be comprised of seeds that were produced in many different years. This study aimed to determine the impact of cone age and degree of serotiny on longevity in ex situ storage.

Methods

Cones of identifiable age classes were collected from three species of Banksia. Seeds were extracted from cones and the degree of serotiny calculated. An estimate of initial viability (Ki), the time for viability to fall by one probit (σ) and the relative longevity of seeds (p50) for each species and cone age class was determined using a comparative longevity test (50 °C, 63 % relative humidity).

Key Results

The degree of serotiny ranged from moderate (7·9) for Banksia attenuata to strong (40·4) for B. hookeriana. Survival curves for all seed age classes within each species could be described by regressions with a common slope (1/σ), but with different values for Ki. The time taken for viability to fall by one probit (σ) could be described by a common value (29·1 d) for all three species.

Conclusions

Differences in seed longevity between cone age classes and species was related to variation in initial viability (Ki) rather than to differences in σ. While targeting the youngest mature seed cohort on a plant will maximize the viability of seeds collected, a wide range of age classes should be collected (but stored as separate cohorts if possible) for quality conservation/restoration seed collections where genetic diversity is important.  相似文献   

3.

Background and Aims

It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments.

Methods

A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits.

Key Results

The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth.

Conclusions

The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.  相似文献   

4.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

5.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

6.

Background

Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem.

Results

The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively.

Conclusions

Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.  相似文献   

7.
8.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   

9.

Background

Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60–70°C.

Results

A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50–70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes.

Conclusion

Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0118-z) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background and Aims

The Senecio hybrid zone on Mt Etna, Sicily, is characterized by steep altitudinal clines in quantitative traits and genetic variation. Such clines are thought to be maintained by a combination of ‘endogenous’ selection arising from genetic incompatibilities and environment-dependent ‘exogenous’ selection leading to local adaptation. Here, the hypothesis was tested that local adaptation to the altitudinal temperature gradient contributes to maintaining divergence between the parental species, S. chrysanthemifolius and S. aethnensis.

Methods

Intra- and inter-population crosses were performed between five populations from across the hybrid zone and the germination and early seedling growth of the progeny were assessed.

Key Results

Seedlings from higher-altitude populations germinated better under low temperatures (9–13 °C) than those from lower altitude populations. Seedlings from higher-altitude populations had lower survival rates under warm conditions (25/15 °C) than those from lower altitude populations, but also attained greater biomass. There was no altitudinal variation in growth or survival under cold conditions (15/5 °C). Population-level plasticity increased with altitude. Germination, growth and survival of natural hybrids and experimentally generated F1s generally exceeded the worse-performing parent.

Conclusions

Limited evidence was found for endogenous selection against hybrids but relatively clear evidence was found for divergence in seed and seedling traits, which is probably adaptive. The combination of low-temperature germination and faster growth in warm conditions might enable high-altitude S. aethnensis to maximize its growth during a shorter growing season, while the slower growth of S. chrysanthemifolius may be an adaptation to drought stress at low altitudes. This study indicates that temperature gradients are likely to be an important environmental factor generating and maintaining adaptive divergence across the Senecio hybrid zone on Mt Etna.  相似文献   

11.

Background

The selection of variable sites for inclusion in genomic analyses can influence results, especially when exemplar populations are used to determine polymorphic sites. We tested the impact of ascertainment bias on the inference of population genetic parameters using empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We simulated data under three demographic models. Each simulated data set was subjected to three ascertainment schemes: (I) random selection; (II) geographically biased selection; and (III) selection biased toward loci polymorphic in multiple groups. Empirical data comprised samples of 25 individuals representing each continental group. These cattle were genotyped for 47,506 loci from the bovine 50 K SNP panel. We compared the inference of population histories for the empirical and simulated data sets across different ascertainment conditions using FST and principal components analysis (PCA).

Results

Bias toward shared polymorphism across continental groups is apparent in the empirical SNP data. Bias toward uneven levels of within-group polymorphism decreases estimates of FST between groups. Subpopulation-biased selection of SNPs changes the weighting of principal component axes and can affect inferences about proportions of admixture and population histories using PCA. PCA-based inferences of population relationships are largely congruent across types of ascertainment bias, even when ascertainment bias is strong.

Conclusions

Analyses of ascertainment bias in genomic data have largely been conducted on human data. As genomic analyses are being applied to non-model organisms, and across taxa with deeper divergences, care must be taken to consider the potential for bias in ascertainment of variation to affect inferences. Estimates of FST, time of separation, and population divergence as estimated by principal components analysis can be misleading if this bias is not taken into account.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1469-5) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background and Aims

A model to predict anthesis time of a wheat plant from environmental and genetic information requires integration of current concepts in physiological and molecular biology. This paper describes the structure of an integrated model and quantifies its response mechanisms.

Methods

Literature was reviewed to formulate the components of the model. Detailed re-analysis of physiological observations are utilized from a previous publication by the second two authors. In this approach measurements of leaf number and leaf and primordia appearance of near isogenic lines of spring and winter wheat grown for different durations in different temperature and photoperiod conditions are used to quantify mechanisms and parameters to predict time of anthesis.

Key Results

The model predicts the time of anthesis from the length of sequential phases: 1, embryo development; 2, dormant; 3, imbibed/emerging; 4, vegetative; 5, early reproductive; 6, pseudo-stem extension; and 7, ear development. Phase 4 ends with vernalization saturation (VS), Phase 5 with terminal spikelet (TS) and Phase 6 with flag leaf ligule appearance (FL). The durations of Phases 4 and 5 are linked to the expression of Vrn genes and are calculated in relation to change in Haun stage (HS) to account for the effects of temperature per se. Vrn1 must be expressed to sufficient levels for VS to occur. Vrn1 expression occurs at a base rate of 0·08/HS in winter ‘Batten’ and 0·17/HS in spring ‘Batten’ during Phases 1, 3 and 4. Low temperatures promote expression of Vrn1 and accelerate progress toward VS. Our hypothesis is that a repressor, Vrn4, must first be downregulated for this to occur. Rates of Vrn4 downregulation and Vrn1 upregulation have the same exponential response to temperature, but Vrn4 is quickly upregulated again at high temperatures, meaning short exposure to low temperature has no impact on the time of VS. VS occurs when Vrn1 reaches a relative expression of 0·76 and Vrn3 expression begins. However, Vrn2 represses Vrn3 expression so Vrn1 must be further upregulated to repress Vrn2 and enable Vrn3 expression. As a result, the target for Vrn1 to trigger VS was 0·76 in 8-h photoperiods (Pp) and increased at 0·026/HS under 16-h Pp as levels of Vrn2 increased. This provides a mechanism to model short-day vernalization. Vrn3 is expressed in Phase 5 (following VS), and apparent rates of Vrn3 expression increased from 0·15/HS at 8-h Pp to 0·33/HS at 16-h Pp. The final number of leaves is calculated as a function of the HS at which TS occurred (TSHS): 2·86 + 1·1 × TSHS. The duration of Phase 6 is then dependent on the number of leaves left to emerge and how quickly they emerge.

Conclusions

The analysis integrates molecular biology and crop physiology concepts into a model framework that links different developmental genes to quantitative predictions of wheat anthesis time in different field situations.  相似文献   

13.

Background and Aims

The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations.

Methods

Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra).

Key Results

Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood.

Conclusions

Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.  相似文献   

14.

Background and Aims

Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions.

Methods

Nitrogen was added to the soil at rates of 0, 0·5, 1·0, 3·0, 6·0 and 24·0 g N m−2 year−1. Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass.

Key Results

Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship.

Conclusions

These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.  相似文献   

15.

Background and Aims

A previous study detected no allozyme diversity in Iberian populations of the buckler-fern Dryopteris aemula. The use of a more sensitive marker, such as microsatellites, was thus needed to reveal the genetic diversity, breeding system and spatial genetic structure of this species in natural populations.

Methods

Eight microsatellite loci for D. aemula were developed and their cross-amplification with other ferns was tested. Five polymorphic loci were used to characterize the amount and distribution of genetic diversity of D. aemula in three populations from the Iberian Peninsula and one population from the Azores.

Key Results

Most microsatellite markers developed were transferable to taxa close to D. aemula. Overall genetic variation was low (HT = 0·447), but was higher in the Azorean population than in the Iberian populations of this species. Among-population genetic differentiation was high (FST = 0·520). All loci strongly departed from Hardy–Weinberg equilibrium. In the population where genetic structure was studied, no spatial autocorrelation was found in any distance class.

Conclusions

The higher genetic diversity observed in the Azorean population studied suggested a possible refugium in this region from which mainland Europe has been recolonized after the Pleistocene glaciations. High among-population genetic differentiation indicated restricted gene flow (i.e. lack of spore exchange) across the highly fragmented area occupied by D. aemula. The deviations from Hardy–Weinberg equilibrium reflected strong inbreeding in D. aemula, a trait rarely observed in homosporous ferns. The absence of spatial genetic structure indicated effective spore dispersal over short distances. Additionally, the cross-amplification of some D. aemula microsatellites makes them suitable for use in other Dryopteris taxa.  相似文献   

16.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

17.

Background and Aims

A major germination-promoting chemical in smoke-water is 3-methyl-2H-furo[2,3-c]pyran-2-one (karrikinolide, KAR1). However, not all species that germinate in response to smoke-water are responsive to KAR1, such as Tersonia cyathiflora (Gyrostemonaceae). In this study, a test was made of whether two Gyrostemon species (Gyrostemonaceae) that have previously been shown to respond to smoke-water, respond to KAR1. If not, then the smoke-derived chemical that stimulates germination of these species is currently unknown. Recently, glyceronitrile was isolated from smoke-water and promoted the germination of certain Anigozanthos species (Haemodoraceae). Whether this chemical promotes Gyrostemon racemiger germination is also examined. Furthermore, an investigation was carried out into whether these species germinate in response to smoke-water derived from burning cellulose alone.

Methods Gyrostemon racemiger

and G. ramulosus seeds were buried after collection and retrieved in autumn the following year when dormancy was alleviated and seeds had become responsive to smoke-water. Anigozanthos flavidus seeds were after-ripened at 35 °C to alleviate dormancy. Gyrostemon and Anigozanthos seeds were then tested with ‘Seed Starter’ smoke-water, KAR1, glyceronitrile and cellulose-derived smoke-water.

Key Results

Although Gyrostemon racemiger, G. ramulosus and A. flavidus were all stimulated to germinate by ‘Seed Starter’ smoke-water, none of these species responded to KAR1. Gyrostemon racemiger germination was not promoted by glyceronitrile. This is in contrast to A. flavidus, where glyceronitrile, at concentrations of 1–500 µm, promoted germination, although seedling growth was inhibited at ≥400 µm. Maximum A. flavidus germination occurred at glyceronitrile concentrations of 25–300 µm. Some Gyrostemon germination was promoted by cellulose-derived smoke-water.

Conclusions

KAR1 and glyceronitrile, chemicals in smoke-water that are known to stimulate germination in other species, did not promote the germination of G. racemiger. This suggests that other chemical(s) which promote germination are present in smoke, and may be derived from burning cellulose alone.  相似文献   

18.

Background and Aims

Clonal growth is a common feature in flowering plants. As clone size increases, the selfing rate in self-compatible species is likely to increase due to more frequent geitono-pollination events (i.e. pollination among flowers within the same genet). This study investigated the breeding system of the marsh cinquefoil (Comarum palustre) and assessed spatial distribution of clones, clone size and architecture, and their effects on realized outcrossing rates. In addition, pollen dispersal was investigated in two patchy populations.

Methods

The species'' breeding system was investigated under controlled conditions through hand pollinations (self- vs. cross-pollination). Using microsatellite markers, an assessment was made of the realized outcrossing rates and the genetic diversity in four natural populations, the clonal structure in two populations within five 15 × 15 m sampling plots following 0·5 × 0·5 m grids, and the pollen dispersal through paternity assignment tests in those two populations.

Key Results Comarum palustre

is a self-compatible species but only presents a low rate of spontaneous self-pollination. The occurrence of inbreeding depression was not detected at the seed set stage (δSS = 0·04). Clones were spatially clumped (AC = 0·60–0·80), with intermediate to no intermingling of the ramets (DC = 0·40–1·00). Genet size ranged from one to 171 ramets. Patchy populations had low outcrossing rates (tm = 0·33–0·46). Large clones showed lower outcrossing rates than small clones. Pollen dispersal mainly occurred within patches as only 1–7 % of the pollination events occurred between patches of >25 m separation. Seedling recruitment events were detected.

Conclusions

Genet size together with distances between patches, through increasing geitono-pollination events, appeared to be important factors influencing realized outcrossing rates. The study also revealed seed flow allowing seedling recruitment, which may contribute to increasing the number of new patches, and potentially further enhance gene flow within populations.  相似文献   

19.

Background

Tribolium castaneum (Herbst) is a major pest of stored grain-based products, and cause severe damage to cereal grains throughout the world. The present investigation was aimed to determine the pesticidal and pest repellent activities of 2α,3β,21β,23,28-penta hydroxyl 12-oleanene against T. castaneum. The compound 2α,3β,21β,23,28-penta hydroxyl 12-oleanene is a triterpenoid which was isolated from the roots of Laportea crenulata Gaud. Surface film technique was used for pesticidal screening, whereas, pest repellency property of the triterpenoid was determined by filter paper disc method.

Results

At 24 hours of exposure duration, significant mortality records (80% and 86%) were observed at doses 0.88 and 1.77 mg/cm2. No significant change in mortality records was observed when duration of exposure was increased up to 48 hours. The triterpenoid showed significant repellency activity at doses 0.47 and 0.94 mg/cm2.

Conclusion

These data suggest that the triterpenoid 2α,3β,21β,23,28-penta hydroxyl 12-oleanene possess both pesticidal and pest repellency activities against T. castaneum and can be used in controlling the pest of grain-based products.

Electronic supplementary material

The online version of this article (doi:10.1186/0717-6287-47-68) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background and Aims

Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression.

Methods

Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively.

Key Results

The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation.

Conclusions

Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号