首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3′ untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5′ UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3′ UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.  相似文献   

4.
Translation initiation represents a key step during regulation of gene expression in chloroplasts. Here, we report on the identification and characterization of three suppressor point mutations which overcome a translational defect caused by the deletion of a U-rich element in the 5′-untranslated region (5′-UTR) of the psbD mRNA in the green alga Chlamydomonas reinhardtii. All three suppressors affect a secondary RNA structure encompassing the psbD AUG initiation codon within a double-stranded region as judged by the analysis of site-directed chloroplast mutants as well as in vitro RNA mapping experiments using RNase H. In conclusion, the data suggest that these new element serves as a negative regulator which mediates a rapid shut-down of D2 synthesis.  相似文献   

5.
6.
7.
The 5′ untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5′ terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5′ untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.  相似文献   

8.
9.
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3′ untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3′ UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3′ UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5′ end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5′ UTR, since a hairpin structure abolishes expression of a fused reporter gene.  相似文献   

10.
11.
12.
13.
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.  相似文献   

14.
The nonsense-mediated mRNA decay (NMD) pathway serves an important role in gene expression by targeting aberrant mRNAs that have acquired premature termination codons (PTCs) as well as a subset of normally processed endogenous mRNAs. One determinant for the targeting of mRNAs by NMD is the occurrence of translation termination distal to the poly(A) tail. Yet, a large subset of naturally occurring mRNAs contain long 3′ UTRs, many of which, according to global studies, are insensitive to NMD. This raises the possibility that such mRNAs have evolved mechanisms for NMD evasion. Here, we analyzed a set of human long 3′ UTR mRNAs and found that many are indeed resistant to NMD. By dissecting the 3′ UTR of one such mRNA, TRAM1 mRNA, we identified a cis element located within the first 200 nt that inhibits NMD when positioned in downstream proximity of the translation termination codon and is sufficient for repressing NMD of a heterologous reporter mRNA. Investigation of other NMD-evading long 3′ UTR mRNAs revealed a subset that, similar to TRAM1 mRNA, contains NMD-inhibiting cis elements in the first 200 nt. A smaller subset of long 3′ UTR mRNAs evades NMD by a different mechanism that appears to be independent of a termination-proximal cis element. Our study suggests that different mechanisms have evolved to ensure NMD evasion of human mRNAs with long 3′ UTRs.  相似文献   

15.
16.
17.
18.
RNase J1, a ribonuclease with 5′ exonuclease and endonuclease activities, is an important factor in Bacillus subtilis mRNA decay. A model for RNase J1 endonuclease activity in mRNA turnover has RNase J1 binding to the 5′ end and tracking to a target site downstream, where it makes a decay-initiating cleavage. The upstream fragment from this cleavage is degraded by 3′ exonucleases; the downstream fragment is degraded by RNase J1 5′ exonuclease activity. Previously, ΔermC mRNA was used to show 5′-end dependence of mRNA turnover. Here we used ΔermC mRNA to probe RNase J1-dependent degradation, and the results were consistent with aspects of the model. ΔermC mRNA showed increased stability in a mutant strain that contained a reduced level of RNase J1. In agreement with the tracking concept, insertion of a strong stem–loop structure at +65 resulted in increased stability. Weakening this stem–loop structure resulted in reversion to wild-type stability. RNA fragments containing the 3′ end were detected in a strain with reduced RNase J1 expression, but were undetectable in the wild type. The 5′ ends of these fragments mapped to the upstream side of predicted stem–loop structures, consistent with an impediment to RNase J1 5′ exonuclease processivity. A ΔermC mRNA deletion analysis suggested that decay-initiating endonuclease cleavage could occur at several sites near the 3′ end. However, even in the absence of these sites, stability was further increased in a strain with reduced RNase J1, suggesting alternate pathways for decay that could include exonucleolytic decay from the 5′ end.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号