首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
围封会促进退化高寒草甸植被和土壤环境恢复,长期围封也会导致生物多样性及其功能下降,影响高寒草甸生态系统的稳定,但这种影响会随着季节和生境条件变化而异。为了探究不同退化程度高寒草甸地表节肢动物群落变化对围封禁牧的响应,利用陷阱法调查了疏勒河源区沼泽化草甸、草甸和草原化草甸3种不同退化梯度高寒草甸围封禁牧和自由放牧处理下地表节肢动物群落结构变化。结果表明:围封禁牧对高寒草甸地表节肢动物群落组成及多样性的影响随生境条件不同而异。禁牧降低了沼泽化草甸地表节肢动物的物种丰富度,而提高了草甸和草原化草甸地表节肢动物的物种丰富度;围封禁牧对沼泽化草甸地表节肢动物群落结构影响较小,显著降低了草甸生境地表节肢动物活动密度、提高了地表节肢动物多样性和均匀度,相反,禁牧显著提高了草原化草甸生境地表节肢动物活动密度、降低其多样性和均匀度;豹蛛属1种是高寒草甸主要的地表节肢动物类群(相对多度为67.0%),高寒草甸土壤水分有效性等生境条件不同影响了豹蛛属1种对围封禁牧的响应模式,进而影响了地表节肢动物群落结构变化。总之,高寒草甸退化程度影响了地表节肢动物多样性对禁牧和放牧的响应模式,沼泽化草甸适度放牧有利于提高地表节肢动物多样性及其功能。  相似文献   

2.
The effects of two grazer species (cattle or sheep) and two flock types (single or mixed with goats) on vegetation and arthropod fauna were studied in a factorial design on eight plots which comprised two thirds of mechanically cleared heathland and one third of improved ryegrass-clover grassland. After six grazing seasons, the shrubland areas were dominated by gorse (Ulex gallii) in all treatments. Herbaceous cover was higher under mixed than under single grazing, and under sheep than under cattle grazing. Higher captures of Opiliones, Julida, Lithobiomorpha, Microcoryphia and Carabidae were recorded in shrublands than in grasslands, while the reverse was observed for Linyphiidae, Lycosidae and Hemiptera. Within shrublands, fauna responded to the flock type but not to the grazer species. More arthropod groups favoured the patchier areas with higher herbaceous biomass generated by mixed herds with goats. Within grasslands, species-specific responses to the grazer species were observed. Mixed grazing schemes which include goats within partially improved heathlands could contribute to maintain higher biodiversity levels in these marginal areas.  相似文献   

3.
  1. Prairie dogs (Cynomys sp.) are considered keystone species and ecosystem engineers for their grazing and burrowing activities (summarized here as disturbances). As climate changes and its variability increases, the mechanisms underlying organisms'' interactions with their habitat will likely shift. Understanding the mediating role of prairie dog disturbance on vegetation structure, and its interaction with environmental conditions through time, will increase knowledge on the risks and vulnerability of grasslands.
  2. Here, we compared how plant taxonomical diversity, functional diversity metrics, and community‐weighted trait means (CWM) respond to prairie dog C. mexicanus disturbance across grassland types and seasons (dry and wet) in a priority conservation semiarid grassland of Northeast Mexico.
  3. Our findings suggest that functional metrics and CWM analyses responded to interactions between prairie dog disturbance, grassland type and season, whilst species diversity and cover measures were less sensitive to the role of prairie dog disturbance. We found weak evidence that prairie dog disturbance has a negative effect on vegetation structure, except for minimal effects on C4 and graminoid cover, but which depended mainly on season. Grassland type and season explained most of the effects on plant functional and taxonomic diversity as well as CWM traits. Furthermore, we found that leaf area as well as forb and annual cover increased during the wet season, independent of prairie dog disturbance.
  4. Our results provide evidence that grassland type and season have a stronger effect than prairie dog disturbance on the vegetation of this short‐grass, water‐restricted grassland ecosystem. We argue that focusing solely on disturbance and grazing effects is misleading, and attention is needed on the relationships between vegetation and environmental conditions which will be critical to understand semiarid grassland dynamics under future climate change conditions in the region.
  相似文献   

4.
Abstract. The hypothesis that season of defoliation and herbivore selectivity may be as important as level of use in determining plant community response to grazing was tested in a monsoon grassland in northern Australia. Plots, dominated by the tussock grasses Themeda triandra and Chrysopogon fallax, were grazed by cattle at low, medium and high rates of utilization in either the early wet, late wet or dry seasons. Effects of grazing on species composition were greatest in the early wet season when high rates of utilization significantly reduced the proportion and occurrence of Themeda and increased the proportion of forbs. Grazing in the dry season had no significant effect on composition. At medium and high levels of utilization in the early wet season, the pasture responded negatively to defoliation, only partially compensating for plant tissue lost to herbivory. The negative response to defoliation carried over to the next wet season when these same medium and high-grazing treatments produced only 80 % and 60 % growth, respectively, of that in treatments grazed at low levels of utilization or those grazed during the dry season. The frequency of Themeda was still lower, and that of annual grasses and non-leguminous forbs higher, in plots that had been grazed at a high rate of utilization for just eight weeks in the early wet season two years previously. Species richness and diversity were also significantly affected by this grazing disturbance. If species composition is to be maintained in these grasslands then stocking rates must be set at low levels to cope with the combined effect of undercompensation in response to defoliation in the wet season and strong dietary preferences for grazing sensitive species.  相似文献   

5.
1. The species composition and spatial distribution of small insects (Hemiptera, Coleoptera, Lepidoptera) and arachnids (Araneae, Opiliones, and Pseudoscorpiones) were investigated in three indigenous, upland grasslands identified as the National Vegetation Classification Festuca–Agrostis–Galium typical subcommunity (code U4a), Festuca–Agrostis–Galium, Vaccinium–Deschampsia subcommunity (code U4e), and Nardus stricta species-poor sub-community (code U5a), on which grazing management was manipulated experimentally. 2. Two hypotheses were tested that predicted arthropod diversity in upland grasslands. The habitat heterogeneity hypothesis predicts that the species number and abundance of arthropods will have an asymptotic relationship with increasing numbers of plant species and greater structural heterogeneity in the vegetation. The symbiosis between patches hypothesis states that the species number and abundance of arthropods will express a unimodal relationship with the grain size of sward patches created by grazing. The sward patches must be large enough to be apparent to, and support populations of, arthropods, but small enough that interspersed tussocks provide shelter from weather and a deterrent to disturbance by grazers. 3. The hypotheses were tested by sampling arthropods from the geometrical patterns represented by the individual tussocks and intermediate sward components of three indigenous grasslands produced by different grazing treatments. Paired samples of arthropods were taken by motorized suction sampler, the first of the pair from the grazed sward and the second, the accumulated samples from the surrounding triad of tussocks (U4a and U5a grasslands) or hummocks (U4e grassland). The paired samples were taken from six randomly-selected locations across both replicates of each of the grazing treatments. 4. Arthropod species composition and abundance were compared between the paired sward and tussock samples and in turn with measures of the vertical and horizontal components of vegetation structure, i.e. the variance in vegetation height per unit area and the area covered by tussock compared with sward. 5. There were consistently more species and a greater abundance of arthropods associated with tussocks than with swards and the average species number and abundance for the combined pair of samples declined with increased grazing pressure. The relationship between vertical and horizontal components of vegetation structure and the species number and abundance of selected arthropods was asymptotic as opposed to unimodal, supporting the habitat heterogeneity hypothesis, rather than the symbiosis between patches hypothesis. 6. Small and relatively sedentary insects and arachnids are more sensitive to grazing intensity and species of grazer in these upland, indigenous grasslands than are larger Coleoptera and Araneae, which respond less directly to varied grazing management. The overall linear reduction of small herbivorous and predatory arthropods with increased grazing intensity was buffered in grasslands with substantial tussock patches.  相似文献   

6.
Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15 %, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.  相似文献   

7.
任强  艾鷖  胡健  田黎明  陈仕勇  泽让东科 《生态学报》2021,41(17):6862-6870
放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm2、中牧:2头/hm2和重牧:3头/hm2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强度均无显著性响应;土壤全氮和pH的响应主要在表层0-20 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。  相似文献   

8.
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida) 6个草地群落为对象, 研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明: 1)在个体水平上, 放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地, 植物在放牧干扰下表现出明显的小型化现象; 2)在群落水平上, 放牧亦显著降低了群落总生物量和茎、叶生物量; 3)过度放牧显著改变了物种的资源分配策略, 使生物量向叶的分配比例增加, 向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策; 4)轻度放牧对物种的资源分配没有显著影响, 单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势, 这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略, 进而对生态系统功能产生重要的影响。  相似文献   

9.
Functional redundancy predicts that some species may play equivalent roles in ecosystem functioning therefore conferring a kind of ‘insurance’ to perturbation when species richness is reduced, by the compensation of species of the same functional group on ecosystem processes. We evaluate functional redundancy on grassland plant communities by a removal experiment in which the evaluated treatments were: GG – clipping two graminoid species, FF – clipping two forb species, GF – clipping one graminoid and one forb species and Control – no removal. We tested the hypothesis that the above‐ground biomass removal of one species of each functional group would cause less change in the community composition (community persistence) and less decrease in biomass production than the above‐ground biomass removal of two species of the same functional group. Functional redundancy was corroborated for community persistence since treatments FG and C caused less change in community composition than treatments GG and FF, although no differences were found between treatments for above‐ground biomass. We verified that clipped species tend to be compensated by an increase in the percent cover of the remaining species of the same functional group. This work provides experimental evidence of early responses after plant clipping in small spatial scale of functional redundancy in naturally established grassland plant communities. We highlight redundancy as an intrinsic feature of communities insuring their reliability, as a consequence of species compensation within functional groups.  相似文献   

10.
We characterized spatial and temporal changes in nitrate concentrations of the leachate from annual grasslands and subsequently emergent spring-waters and tested the effect of livestock grazing removal on them. Nitrate patterns indicated that annual grassland soils are a likely N source to spring-fed wetlands, which appear to intercept and transform N along its hydrologic path from upland soils to spring-fed, headwater streams. Aboveground biomass and soil N extractions suggested that removal of livestock grazing from these wetlands impaired this function by allowing dead plant material to accumulate inhibiting plant production (hence, plant N demand), resulting in elevated stream-water nitrate (NO3) concentrations. Nitrous oxide (N2O) fluxes indicated that grazing removal may increase the relative importance of this N-loss pathway. Microbial biomass varied with season but was not affected by grazing treatments suggesting that N2O losses were related to differences in NO3 availability rather than grazing effects on microbial community composition or their activity. Spring-fed wetlands provide important ecosystem services such as plant uptake and denitrification at transition zones between terrestrial and aquatic ecosystems. These N-retention and transformation functions may be enhanced through biomass harvesting by livestock.  相似文献   

11.
Questions: Has the species-rich vegetation of upland hay meadows been maintained under low intensity management imposed by an agri-environment scheme? Is the target plant community re-establishing where it has been modified previously by intensive agricultural practices? What combinations of management practices and soil properties are associated with changes towards or away from the target community? Location: The Pennines, northern England, UK. Methods: A survey of 116 hay meadows in 1987 was repeated in 2002 by recording plant species in permanent quadrats. Changes in community variables (species richness, Ellenberg values, upland hay meadow community coefficients) were analysed in species-rich, modified species-rich and degraded grassland types. Redundancy Analysis and Generalised Linear Models were used to show the relationship between management practices and soil properties and change in species composition and community variables. Results: Few sites contained the species-rich grassland type, and here forb richness declined. In the modified species-rich type, total and grass species richness increased but Ellenberg N-values also increased. Total and grass species richness increased in the degraded type and the community coefficient increased. Management was weakly related to change in species composition but showed clear relationships with the community variables. Re-establishment of the target species-rich community was more likely with late cutting, in the absence of cattle or prolonged spring grazing, and at lower soil nutrient status. Conclusion: The species-rich community was not maintained but some reversion occurred in degraded grassland. Inorganic fertiliser application and intensive spring grazing should be avoided and cutting delayed until late July.  相似文献   

12.
Aims Understanding the drivers of grassland structure and function following livestock removal will inform grassland restoration and management. Here, we investigated the effects of fire and nutrient addition on structure and function in a subtropical semi-native grassland recently released from grazing in south-central Florida. We examined responses of soil nutrients, plant tissue nutrients, biomass of live, standing dead and litter, and plant species composition to experimental annual prescribed fire applied during different seasons (wet season vs. dry season), and nutrient additions (N, P and N + P) over 9 years.Methods Experimental plots were set up in a randomized block split-plot design, with season of prescribed fire as the main treatment and nutrient addition as the subplot treatment. Species cover data were collected annually from 2002 to 2011 and plant tissue and plant biomass data were collected in 2002–2006 and 2011. Soil nutrients were analyzed in 2004, 2006 and 2011.Important findings Soil total phosphorus (P) levels increased substantially with P addition but were not influenced by prescribed fire. Addition of P and N led to increased P and N concentrations in live plant tissues, but prescribed fire reduced N in live tissue. Levels of tissue N were higher in all plots at the beginning of the experiment, an effect that was likely due to grazing activity prior to removal of livestock. Plant tissue N steadily declined over time in all plots, with annually burned plots declining faster than unburned plots. Prescribed fire was an important driver of standing dead and litter biomass and was important for maintaining grass biomass and percent cover. Nutrient addition was also important: the addition of both N and P was associated with greater live biomass and woody forbs. Removal of grazing, lack of prescribed fire, and addition of N + P led to a reduction of grass biomass and a large increase in biomass of a woody forb. Annual prescribed fire promoted N loss from the system by reducing standing dead and litter, but maintained desirable biomass of grasses.  相似文献   

13.
Questions: What are the interactive effects of flooding and cattle trampling upon the structural attributes and the floristic composition of a plant community? Do the effects on the plant community persist over an extended recovery period? Location: Flooding Pampa grasslands, Argentina (36°30′ S, 58°30′ W). Methods: We assessed the effects of 40‐d of flooding, trampling and the combination thereof on plant cover and biomass, vertical distribution of foliage and floristic composition in lowland grassland mesocosms. We considered a 120‐d recovery period to evaluate the persistence of flooding and trampling effects on the plant community. Results: Flooding, with or without trampling, increased cover and biomass of the graminoid species, especially marsh grasses, which developed a taller canopy, whereas most of the forb species were negatively affected. This was enhanced by trampling, as the aerial biomass of the dominant legume Lotus tenuis decreased by 90%, while three major forb species disappeared. Trampling under flooding conditions did not reduce the total above‐ground biomass production, as the growth enhancement of graminoids was enough to compensate for the breakdown of the forbs. Below‐ground biomass was lower when both perturbations occurred simultaneously. After 120‐d of recovery, graminoids continued to be dominant while the remaining forbs (including L. tenuis) recovered only partially. Below‐ground biomass recovered fully at the end of the growing season. Conclusions: The combination of flooding and trampling shifts the community co‐dominance of graminoids and forbs towards a persistent dominance of graminoid species. When both perturbations are combined, the above‐ground production of the grassland is unaffected and root biomass is rapidly recovered. However, the loss of the legume L. tenuis deserves attention because this is the unique nitrogen‐fixing species of the ecosystem, which improves the forage quality for livestock production.  相似文献   

14.
Dittrichia graveolens is a rapidly spreading invasive plant in California. While populations are observed primarily in disturbed areas, there is concern it may expand into adjacent undisturbed areas, particularly grasslands and riparian corridors. In a field experiment conducted in two successive years, we compared plant growth and phenological development of fall, winter, and spring sown seeds. Plants establish equally well in disturbed upland sites in both above and below average precipitation years but the absence of late spring rainfall negatively affected total plant biomass. In a greenhouse experiment, we compared growth in four light environments (100, 50, 27 and 9 % available light). Total plant growth decreased exponentially with decreasing light. This suggests that D. graveolens is not competitive in low light environments, such as woodlands and riparian forests. All plants flowered in early- to mid-September, coinciding with flowering in field grown plants, suggesting that photoperiod is the primary signal for reproductive growth. Using a minirhizotron system, we measured root growth over time in D. graveolens and three common California annual grassland species, two non-natives, Centaurea solstitialis and Bromus hordeaceus, and the native forb Holocarpha virgata. Root growth of D. graveolens began later in the season than the other species, reaching depths >1 m by late May. Roots of C. solstitialis and H. virgata reached >1 m earlier in the season. The temporal difference in root growth suggests that D. graveolens may be less competitive for soil moisture with other early season annuals than other deep-rooted broadleaf species found in grasslands.  相似文献   

15.
Question: How does responsiveness to water and Nitrogen (N) availability vary across the compositional and functional diversity that exists in a mesic California annual grassland plant community? Location: Northern California annual grassland. Methods: A mesocosm system was used to simulate average annual precipitation totals and dry and wet year extremes observed in northern California mesic grasslands. The effects of precipitation and N availability on biomass and fecundity were measured on three different vegetation types, a mixed grass forb community, and a forb and a grass monoculture. The treatment effects on plant community composition were examined in the mixed species community. Results: While growth and seed production of the three vegetation types was inherently different, their responses to variation in precipitation and N were statistically similar. Plant density, shoot biomass, and seed production tended to increase with greater water availability in all vegetation types, with the exception of a consistent growth reduction in high precipitation (1245 mm) plots in the first year of the study. Shoot biomass responded positively to N addition, an effect that increased with greater water availability. Nitrogen addition had little effect on plant density or seed production. In the mixed grass‐forb community, biomass responsiveness to water and N treatments were consistently driven by the shoot growth of Avena barbata, the dominant grass species. Conclusions: Vegetation responses to changes in precipitation and N availability were consistent across a range of composition and structural diversity in this study. Plant growth and seed production were sensitive to both increased and decreased precipitation totals, and the magnitude of these responses to N availability varied depending on soil moisture conditions. Our results suggest the impacts of changing precipitation regimes and N deposition on annual productivity of California grasslands may be predictable under different climate scenarios across a range of plant communities.  相似文献   

16.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Fencing to exclude grazers is one of the main management practices used to protect grasslands. Can fencing improve grassland community status by restraining grazing? We conducted a field community study and indoor soil analyses to determine the long-term effects of fencing and grazing on the above-ground community and soil in a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau, NW China. Our results showed that fencing significantly improved above-ground vegetation productivity but reduced plant density and species diversity. Long-term fencing favored the improvement of forage grass functional groups and restrained the development noxious weed functional groups. There were significant positive effects of fencing on below-ground organic matter, total nitrogen, available nitrogen, total phosphorus and available phosphorus. The productivity of grazed meadow showed a weak decrease over time. There were long-term decreasing trends for plant density both in fenced and grazed meadows. Our study suggests that grazing can be considered as a useful management practice to improve species diversity and plant density in long-term fenced grasslands and that periodic grazing and fencing is beneficial in grassland management.  相似文献   

17.
樊丹丹  孔维栋 《生态学报》2024,44(2):651-661
草地退化是草地植被的倒退演替,导致生物多样性丧失和生态系统功能退化,围栏是恢复退化草地生态系统功能的有效管理措施。微生物是土壤中的重要组成部分,在维持草地生态系统稳定性和功能方面发挥着重要作用。然而,目前尚不清楚围栏如何影响不同类型草地土壤微生物群落。以青藏高原草甸、草原和荒漠草地三种草地类型的退化草地为研究对象,设置围栏和放牧两种处理,采用Illumina HiSeq高通量测序技术研究了围栏对土壤原核微生物群落多样性和群落结构的影响。结果表明:围栏未显著影响草甸土壤原核微生物的丰富度、Shannon多样性和均匀度,但显著增加了草原土壤的原核微生物的丰富度、Shannon多样性和均匀度(P<0.05),稍降低了荒漠草地土壤原核微生物的丰富度、Shannon多样性和均匀度(P=0.086、0.072和0.099)。在围栏处理的草地中,土壤原核微生物丰富度、Shannon多样性和均匀度与年均温、干旱度和pH显著负相关(P<0.01),与年平均降水量、溶解性有机碳、地上生物量和植物多样性显著正相关(P<0.01)。在放牧处理的草地中,土壤原核微生物丰富度、Shannon多样性和均匀度与年均温和干旱度显著负相关(P<0.05),但原核微生物丰富度和Shannon多样性与所有土壤理化和植被因素均无显著相关性。冗余分析(RDA)表明,不同类型草地土壤原核微生物群落结构发生了显著的变化,并沿草甸、草原和荒漠草地的过渡逐渐转变(P<0.001)。方差分解分析(VPA)进一步表明,原核微生物群落结构变化主要受年均温、年平均降水量、干旱度和pH的驱动。围栏显著改变了不同类型草地中部分样点土壤原核微生物群落结构。三种草地类型的主要原核微生物优势门均为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)。放线菌门(Actinobacteria)的相对丰度在荒漠草地土壤中最高,而变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)的相对丰度在草甸土壤中最高。此外,不同类型围栏和放牧草地土壤原核微生物类群的相对丰度均无显著差异。研究表明不同类型草地土壤原核微生物群落对围栏的响应不同,这为因地制宜制定草地管理措施提供了数据支持,为草地退化的防治提供了理论支持。  相似文献   

18.
Global climate change is altering precipitation patterns. The effect of water stress on plant–herbivore interactions is poorly understood even though this is a primary ecological interaction that will be altered by climate change. This is especially true for grasslands where water is often limiting. In this study we manipulated water inputs in open grassland plots (1 m2) during a severe drought and assessed plant and insect herbivore responses. There were two watering treatments: ambient and supplemented. Supplemented plots received water weekly in amounts that mimicked average seasonal rainfall. For plants, we were interested in how water input affected protein and digestible carbohydrate content; previous studies predicted water stress would increase the concentration of these two nutrients. Grasshoppers are the dominant insect herbivores in grasslands and we assessed their responses to water inputs by measuring abundance and diversity. Previous studies suggested grasshoppers would prefer water‐stressed plots. Protein and carbohydrate content in bulk grass and forb samples, plus plant biomass and diversity, were measured monthly (May–August). Immediately prior to harvesting plant tissue, we counted and identified individual grasshoppers in each plot. Grass biomass was reduced with water stress, but macronutrient content and species diversity were unaffected. After three months water‐stressed forbs were less protein biased, and diverse, relative to watered forbs; forb biomass was indistinguishable between treatments. Grasshopper abundance and diversity were lower in water‐stressed plots as the season progressed. However, grasshopper‐feeding biology mattered: densities of mixed‐feeders and grass‐feeders, but not forb‐specialists, decreased over time in water‐stressed plots, but not in water supplemented plots. Our results demonstrate the importance of focusing on plant and insect herbivore functional groups and provide valuable new data that can be incorporated into models to explore the effects of global climate change in greater detail.  相似文献   

19.
为了揭示高寒小嵩草草甸群落在放牧扰动下,探讨土壤养分供给水平的变化对生态系统初级生产力和多样性影响,为高寒草地的退化演替机理研究提供依据,以野外样地调查和室内分析法研究了放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应.结果表明,放牧干扰不仅改变了高寒小蒿草草甸群落土壤根系和蕴育土壤根系的"载体"量及根土比例,改变了植物群落的结构和功能,而且使土壤的物理和化学特性发生了明显的改变.随着放牧强度的增加,蕴育土壤根系的基质量逐渐减少,根土比特别是0~10 cm土层的根土比例增加;"载体"量减少导致大部分地下根系由于营养供给水平的降低而死亡,归还土壤中有机质的数量逐渐减少,加之地上部分持续利用,土壤养分也在不断消耗,土壤基质量的减少和土壤资源持续供给能力的下降,草地发生逆向演替(退化),表现在:物种数减少、多样性下降、能量的分配转向地下等;土壤性状上的某些改变(土壤容重、土壤湿度等),也会引起植被组成、物种多样性变化;放牧主要通过影响土壤环境及其养分含量来改变草地群落生物量(地上、地下);土壤表面的适度干扰和原有植物的适度破坏为新成员提供了小生境,从而允许新的植物侵入群落,并提高了植物的丰富度.但是,在受到强度干扰时,草地植物群落的主要物种的优势地位发生明显的替代变化.  相似文献   

20.
Temperate grasslands have suffered from severe habitat loss and degradation worldwide. In Russia, vast areas of forest-steppe grasslands have been converted to cropland during Soviet times, whilst remaining grasslands were often intensively grazed. Contrastingly, the collapse of the Soviet Union have resulted in a massive reduction in livestock numbers and cessation of management. Albeit relatively large natural grassland areas remained in the Western Siberian Plain, their present condition is poorly studied. We analysed plant species composition, functional structure and richness of grassland communities and tested for the effect of local factors (management, abiotic site conditions) and landscape factors (patch size, proportion of land cover types) on diversity patterns. Abiotic site conditions, mainly soil moisture and salinity, differentiated distinct community types. Overall, species richness was highest in meadow steppe communities with lower soil moisture and salinity. Grazing intensity and litter accumulation due to cessation of management were significant negative related to species richness and shaped the functional structure. At the landscape scale, diversity in meadow steppe grasslands was higher in forest-grassland mosaics and in small remnants isolated in a matrix of cropland. Our findings highlight that meadow steppes suffered massively under the historical habitat loss and high grazing pressure. Small species-rich remnants are evidence of the former extent of meadow steppe habitats in agricultural landscape, but are likely threatened by an extinction debt. Low intense, irregular mowing maintained species-rich meadow steppe in forest- grassland mosaics, but currently such practices are declining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号