首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many life-history traits co-vary across species, even when body size differences are controlled for. This phenomenon has led to the concept of a "fast-slow continuum," which has been influential in both empirical and theoretical studies of life-history evolution. We present a comparative analysis of mammalian life histories showing that, for mammals at least, there is not a single fast-slow continuum. Rather, both across and within mammalian clades, the speed of life varies along at least two largely independent axes when body size effects are removed. One axis reflects how species balance offspring size against offspring number, while the other describes the timing of reproductive bouts.  相似文献   

2.
The fast-slow paradigm of life history theory has been a popular approach to individual differences in the evolutionary behavioral sciences. Currently, however, the fast-slow paradigm faces several theoretical and empirical challenges. Motivated by questions regarding the validity of certain assumptions of the paradigm, the current study provides an empirical investigation of human female “fast” versus “slow” strategies. In a sample of 1867 women recruited using MTurk, we use structural equation modeling (SEM) to test whether childhood exposure to different environmental variables had unique effects on proposed life history traits, whether mediated by—or independent of—pubertal timing. Models also test whether the proposed life history traits covary with one another as expected by the paradigm. Data reveal that exposure to violence and poor health in particular, but not environmental harshness or unpredictability in general, had significant effects on pubertal timing. Pubertal timing appeared to mediate effects of childhood environments on age at sexual debut, but not any other adult outcome (e.g., sociosexual orientations, reproductive outcomes). Some associations with mating strategies were incompatible with assumptions of the prevailing fast-slow paradigm; for instance, greater short-term mating orientation was positively associated with childhood socioeconomic status and negatively associated with offspring number. These results highlight the need for a new or revised theoretical approach to understanding developmental, mating, and reproductive strategies.  相似文献   

3.
We investigated the prevalence of beliefs in several key and contested aspects of human psychology and behavior in a broad sample of evolutionary-informed scholars (N = 581). Nearly all participants believed that developmental environments substantially shape human adult psychology and behavior, that there are differences in human psychology and behavior based on sex differences from sexual selection, and that there are individual differences in human psychology and behavior resulting from different genotypes. About three-quarters of participants believed that there are population differences from dissimilar ancestral ecologies/environments and within-person differences across the menstrual cycle. Three-fifths believed that the human mind consists of domain-specific, context-sensitive modules. About half of participants believed that behavioral and cognitive aspects of human life history vary along a unified fast-slow continuum. Two-fifths of participants believed that group-level selection has substantially contributed to human evolution. Results indicate that there are both shared core beliefs as well as phenomena that are accepted by varying proportions of scholars. Such patterns represent the views of contemporary scholars and the current state of the field. The degree of acceptance for some phenomena may change over time as evolutionary science advances through the accumulation of empirical evidence.  相似文献   

4.
Since the earliest periods of primatology study, researchers have been aware of animals’ consistent individual differences in behavior or personality. Many papers have been published on this subject, but they lacked a common theoretical and methodological background. The present work is an attempt to provide such theoretical and methodological foundations to this field of biological science. In the theoretical formulation section, “biological study of personality” is first derived as an extension of the ethology paradigm, and non-human primate personality research is subsequently characterized as its strategic component. In the methodology section, brief reviews and discussions are presented on subjective and objective personality assessment methods with non-human primates with a reference to the reliability and validity concepts in human psychometrics. The work provides a theoretical framework and methodological suggestions for non-human primate personality research.  相似文献   

5.
Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life‐history trade‐offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long‐lived species where trade‐offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy–bold continuum, in a long‐lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life‐history strategies.  相似文献   

6.
We critically review the use of the term “life history theory” in recent publications on evolutionary psychology, focusing on how the idea of a fast-slow continuum is deployed in that literature. We raise four issues:First, concerning plasticity, should we expect the effects of plasticity on the developmental response of a trait to mirror the effects of selection on the mean of that trait? We conclude that we should not. Do only plastic responses to harsh or unpredictable environments accelerate maturation, or are there plausible alternatives, such as nutrition? In many situations better nutrition is a plausible alternative.Second, how should we conceive of the harshness of an environment? It has several important dimensions. It could mean an increase in the mean mortality rate, a decrease in the mean growth rate or fertility rate, or increases in the variances of any of those rates. Our judgement of harshness will also be affected by the distribution of such effects across patches in space and through generations in time. The combination and distribution of effects make important differences to predictions.Third, where did the fast-slow idea come from, and how much does it explain? It was initially detected in comparisons across higher taxonomic levels, whose relevance to variation among individuals is unclear and where it fails to explain much of the variation.Fourth, what sorts of processes could generate the fast-slow pattern? Here we expand on insights mentioned earlier in passing to make clear how spatial population structure and class effects generate alternative predictions.We conclude with some thoughts on the nature of theories and research strategies and on how one might respond to empirical puzzles.  相似文献   

7.
Partial migration, where populations of animals are composed of a mixture of resident and migratory individuals, is a widespread phenomenon in nature. It has been reported to occur in all major vertebrate groups, and can have significant ecological consequences. Here we give an overview of the ecology and evolution of partial migration in animals. We firstly review the different types of partial migration, and assess the ecological drivers responsible for driving individual differences in migratory tendency within populations. A variety of factors can be important in promoting the evolution of partial migration, including competition for resources or breeding opportunities, predation risk and intraspecific niche diversity. Often various factors act synergistically to create complex patterns of movement polymorphism within populations. The question of how partial migration is maintained over evolutionary timescales is also addressed. Whilst many theoretical considerations of partial migration utilise an evolutionary stable state (ESS) paradigm, empirical evidence for this is lacking. Rather the evidence suggests that partial migration is mostly condition dependent, and the optimum outcome for an individual is dependent upon its phenotype. What determines whether an individual follows a migratory or resident strategy is discussed in light of new theory and empirical data which supports the idea that environmentally responsive genetic thresholds are important across a range of species, from birds to fish, in proximately shaping migratory tendency. Finally we espouse our vision of how partial migration research will develop in the future, and suggest a number of exciting directions that studies into migratory dimorphism may take in the coming years.  相似文献   

8.
Parasites present a threat for free‐living species and affect several ecological and evolutionary processes. Immune defence is the main physiological barrier against infections, and understanding its evolution is central for predicting disease dynamics. I review theoretical predictions and empirical data on natural selection on quantitative immune defence traits in the wild. Evolutionary theory predicts immune traits to be under stabilizing selection owing to trade‐offs between immune function and life‐history traits. Empirical data, however, support mainly positive directional selection, but also show variation in the form of selection among study systems, immune traits and fitness components. I argue that the differences between theory and empirical data may at least partly arise from methodological difficulties in testing stabilizing selection as well as measuring fitness. I also argue that the commonness of positive directional selection and the variation in selection may be caused by several biological factors. First, selection on immune function may show spatial and temporal variation as epidemics are often local/seasonal. Second, factors affecting the range of phenotypic variation in immune traits could alter potential for selection. Third, different parasites may impose different selective pressures depending on their characteristics. Fourth, condition dependence of immune defence can obscure trade‐offs related to it, thus possibly modifying observed selection gradients. Fifth, nonimmunological defences could affect the form of selection by reducing the benefits of strong immune function. To comprehensively understand the evolution of immune defence, the role of above factors should be considered in future studies.  相似文献   

9.
Jeremy W. Fox 《Oikos》2010,119(11):1823-1833
The temporal variability of ecological communities may depend on species richness and composition due to a variety of statistical and ecological mechanisms. However, ecologists currently lack a general, unified theoretical framework within which to compare the effects of these mechanisms. Developing such a framework is difficult because community variability depends not just on how species vary, but also how they covary, making it unclear how to isolate the contributions of individual species to community variability. Here I develop such a theoretical framework using the multi‐level Price equation, originally developed in evolutionary biology to partition the effects of group selection and individual selection. I show how the variability of a community can be related to the properties of the individual species comprising it, just as the properties of an evolving group can be related to the properties of the individual organisms comprising it. I show that effects of species loss on community variability can be partitioned into effects of species richness (random loss of species), effects of species composition (non‐random loss of species with respect to their variances and covariances), and effects of context dependence (post‐loss changes in species’ variances and covariances). I illustrate the application of this framework using data from the Biodiversity II experiment, and show that it leads to new conceptual and empirical insights. For instance, effects of species richness on community variability necessarily occur, but often are swamped by other effects, particularly context dependence.  相似文献   

10.
There is considerable variation in health and reproductive behaviours within and across human populations. Drawing on principles from Life History Theory, psychosocial acceleration theory predicts that individuals developing in harsh environments decrease their level of somatic investment and accelerate their reproductive schedule. Although there is consistent empirical support for this general prediction, most studies have focused on a few isolated life history traits and few have investigated the way in which individuals apply life strategies across reproductive and somatic domains to produce coordinated behavioural responses to their environment. In our study, we thus investigate the impact of childhood environmental harshness on both reproductive strategies and somatic investment by applying structural equation modeling (SEM) to cross-sectional survey data obtained in a representative sample of the French population (n = 1015, age: 19–87 years old, both genders). This data allowed us to demonstrate that (i) inter-individual variation in somatic investment (e.g. effort in looking after health) and reproductive timing (e.g. age at first birth) can be captured by a latent fast-slow continuum, and (ii) faster strategies along this continuum are predicted by higher childhood harshness. Overall, our results support the existence of a fast-slow continuum and highlight the relevance of the life history approach for understanding variations in reproductive and health related behaviours.  相似文献   

11.
In this review, I will present an overview of the development of the field of scatter hoarding studies. Scatter hoarding is a conspicuous behaviour and it has been observed by humans for a long time. Apart from an exceptional experimental study already published in 1720, it started with observational field studies of scatter hoarding birds in the 1940s. Driven by a general interest in birds, several ornithologists made large-scale studies of hoarding behaviour in species such as nutcrackers and boreal titmice. Scatter hoarding birds seem to remember caching locations accurately, and it was shown in the 1960s that successful retrieval is dependent on a specific part of the brain, the hippocampus. The study of scatter hoarding, spatial memory and the hippocampus has since then developed into a study system for evolutionary studies of spatial memory. In 1978, a game theoretical paper started the era of modern studies by establishing that a recovery advantage is necessary for individual hoarders for the evolution of a hoarding strategy. The same year, a combined theoretical and empirical study on scatter hoarding squirrels investigated how caches should be spaced out in order to minimize cache loss, a phenomenon sometimes called optimal cache density theory. Since then, the scatter hoarding paradigm has branched into a number of different fields: (i) theoretical and empirical studies of the evolution of hoarding, (ii) field studies with modern sampling methods, (iii) studies of the precise nature of the caching memory, (iv) a variety of studies of caching memory and its relationship to the hippocampus. Scatter hoarding has also been the subject of studies of (v) coevolution between scatter hoarding animals and the plants that are dispersed by these.  相似文献   

12.
Aims Species abundance distributions (SADs) are often used to verify mechanistic theories underlying community assembly. However, it is now accepted that SADs alone are not sufficient to reveal biological mechanisms. Recent attention focuses on the relative importance of stochastic dispersal processes versus deterministic processes such as interspecific competition and environmental filtering. Here, we combine a study of the commonness and rarity of species (i.e. the SAD) with mechanistic processes underlying community composition. By comparing the occurrence frequencies of each and every species with its abundance, we quantify the relative contributions of common and rare species to the maintenance of community structure. Essentially, we relate the continuum between commonness and rarity with that of niches and neutrality.Methods An individual-based, spatially explicit model was used to simulate local communities in niche spaces with the same parameters. We generated sets of assemblages from which species were eliminated in opposing sequences: from common to rare and from rare to common, and investigated the relationship between the abundance and frequency of species. We tested the predictions of our model with empirical data from a field experiment in the environmentally homogeneous alpine meadows of the Qinghai–Tibetan plateau.Important findings Our simulations support the widespread notion that common species maintain community structure, while rare species maintain species diversity, in both local and regional communities. Our results, both from theoretical simulations and from empirical observations, revealed positive correlations between the abundance of a particular species and its occurrence frequency. SAD curves describe a continuum between commonness and rarity. Removing species from the 'rare' end of this continuum has little effect on the similarity of communities, but removing species from the 'common' end of the continuum causes significant increases in beta diversity, or species turnover, between communities. In local communities distributed in a homogenous habitat, species located at the 'common' end of the continuum should be selected by environmental filtering, with niche space partitioning governed by interspecific competition. Conversely, species located at the 'rare' end of the continuum are most likely subject to stochastic dispersal processes. Species situated at intermediate locations on this continuum are therefore determined by niche and neutral processes acting together. Our results suggest that, in homogeneous habitats, SAD curves describing the common-rare continuum may also be used to describe the continuum between niches and neutrality.  相似文献   

13.
Co‐existence theories fail to adequately explain observed community patterns (diversity and composition) because they mainly address local extinctions. For a more complete understanding, the regional processes responsible for species formation and geographic dispersal should also be considered. The species pool concept holds that local variation in community patterns is dependent primarily on the availability of species, which is driven by historical diversification and dispersal at continental and landscape scales. However, empirical evidence of historical effects is limited. This slow progress can be attributed to methodological difficulties in determining the characteristics of historical species pools and how they contributed to diversity patterns in contemporary landscapes. A role of landscape‐scale dispersal limitation in determining local community patterns has been demonstrated by numerous seed addition experiments. However, disentangling general patterns of dispersal limitation in communities still requires attention. Distinguishing habitat‐specific species pools can help to meet both applied and theoretical challenges. In conservation biology, the use of absolute richness may be uninformative because the size of species pools varies between habitats. For characterizing the dynamic state of individual communities, biodiversity relative to species pools provides a balanced way of assessing communities in different habitats. Information about species pools may also be useful when studying community assembly rules, because it enables a possible mechanism of trait convergence (habitat filtering) to be explicitly assessed. Empirical study of the role of historic effects and dispersal on local community patterns has often been restricted due to methodological difficulties in determining habitat‐specific species pools. However, accumulating distributional, ecological and phylogenetic information, as well as use of appropriate model systems (e.g. archipelagos with known biogeographic histories) will allow the species pool concept to be applied effectively in future research.  相似文献   

14.
Forsdyke (1999) has recently argued that differences in (G+C)%, or G+C content, may trigger new species formation. He further argues that the genic model has shortcomings that can be overcome by his "chromosomal" (hereafter, "G+C") model. We disagree on several counts. First, we do not accept that the genic model has the shortcomings suggested by Forsdyke. There is an abundance of empirical support for the contribution of individual genes, as well as of mapped chromosomal regions, to post-zygotic reproductive isolation (and Haldane's rule). Further, we argue that the G+C model suffers from the same theoretical difficulties as other speciation models based on underdominance. We also question the evidence Forsdyke uses to support his model. Finally, we describe analyses of G+C content in a well-studied model system of speciation (the Drosophila melanogaster species complex), the results of which are incompatible with the G+C model. Thus, while Forsdyke's G+C model cannot be explicitly ruled out, it is not directly supported by empirical data. In contrast, the genic model is well supported by empirical data, holds up on theoretical grounds, and does not require any assistance from the G+C model.  相似文献   

15.
Rupert Seidl 《Ecosystems》2017,20(2):222-228
Here, I argue that we should abandon the division between “field ecologists” and “modelers,” and embrace modeling and empirical research as two powerful and often complementary approaches in the toolbox of 21st century ecologists, to be deployed alone or in combination depending on the task at hand. As empirical research has the longer tradition in ecology, and modeling is the more recent addition to the methodological arsenal, I provide both practical and theoretical reasons for integrating modeling more deeply into ecosystem research. Empirical research has epistemological priority over modeling; however, that is, for models to realize their full potential, and for modelers to wield this power wisely, empirical research is of fundamental importance. Combining both methodological approaches or forming “super ties” with colleagues using different methods are promising pathways to creatively exploit the methodological possibilities resulting from increasing computing power. To improve the proficiency of the growing group of model users and ensure future innovation in model development, we need to increase the modeling literacy among ecology students. However, an improved training in modeling must not curtail education in basic ecological principles and field methods, as these skills form the foundation for building and applying models in ecology.  相似文献   

16.
Life on Earth has two remarkable properties. The first is variation: even apart from the vast number of extant species, there are considerable differences between individuals within a single species. The second property is cooperation. It is surprising that until recently the interactions between these two properties have rarely been addressed from an evolutionary point of view. Here, I concentrate on how inter-individual differences influence the evolution of cooperation. First, I deal with cases where individuality is maintained by random processes like mutation or phenotypic noise. Second, I examine when differences in state cause differences in behaviour. Finally, I investigate the effects of individual role specialization. Variation can be important in several ways. Increased random variation can change the expectation about cooperativeness of future partners, altering behaviour in a current relationship. Differences in state may serve as a book-keeping mechanism that is necessary for the evolution of reciprocity. If the cost of cooperation can depend on state then strategic regulation of state makes it possible to coerce partners to cooperate. If conditions force individuals to specialize, cooperation becomes more valuable. My review of theoretical models suggests that variation plays an important role in the evolution of cooperation.  相似文献   

17.
Thomas Banitz 《Oikos》2019,128(10):1478-1491
Trait variation within populations is an important area of research for empirical and theoretical ecologists. While differences between individuals are doubtlessly ubiquitous, their role for species coexistence is much less clear and highly debated. Both unstructured (random) and structured (linked to space, time or inheritance) intraspecific trait variation (ITV) may modify species interactions with nontrivial consequences for emerging community compositions. In many ecosystems, these compositions are further driven by prevalent disturbance regimes. I therefore explored the effects of unstructured as well as spatially structured ITV under disturbances in a generic ecological model of competing sessile species. Using spatially explicit, individual‐based simulations, I studied how intraspecific variation in life history traits together with interspecific tradeoffs and disturbance regimes shape long‐term community composition. I found that 1) unstructured ITV does not affect species coexistence in the given context, 2) spatially structured ITV may considerably increase coexistence, but 3) spatially clumped disturbances reduce this effect of spatially structured ITV, especially if interspecific tradeoffs involve dispersal distance. The findings suggest that spatially structured ITV with individual trait responses to local habitat conditions differing among species may create or expand humps in disturbance–diversity relationships. Hence, if present, these forms of spatially structured ITV should be included in ecological models and will be important for reliably assessing community responses to environmental heterogeneity and change.  相似文献   

18.
覃光莲  杜国祯 《生态科学》2005,24(2):158-161,181
近年来物种多样性的急剧丧失使得物种多样性与生态系统功能的时间变异性的关系及其机制问题的研究成为了生态学研究的一个热点。综述了物种多样性与群落集合性质变异性以及种群性质变异性的关系及其机制的最新研究成果:1、理论上探讨造成物种多样性与群落集合性质变异性负相关关系的机制包括:抽样效应、资源利用分化假说、统计平均效应、保险假说、种群变异性的均匀度效应等;但实验研究对理论预期的支持并不是普遍的;2.多样性与种群变异性之间的关系主要依赖于均值-方差尺度系数Z;理论上大部分自然群落是种群变异性应该随着多样性的增加而增加;但有研究表明:在变动环境中多样性对单个组分物种的种群水平有稳定性作用;而经验研究并不能得出多样性对种群变异性效应的清晰模式。讨论了目前的理论和实验研究中存在的和今后研究中需要认真思考的问题。  相似文献   

19.
It has recently been suggested that general rules of change in ecological communities might be found through the development of functional relationships between species traits and performance. The physiological, behavioural and life-history traits of fishes are often organised along a fast-slow lifestyle continuum (FSLC). With respect to resistance (capacity for population to resist change) and resilience (capacity for population to recover from change) to environmental hypoxia, the literature suggests that traits enhancing resilience may come at the expense of traits promoting resistance to hypoxia; a trade-off may exist. Here I test whether three fishes occupying different positions along the FSLC trade-off resistance and resilience to environmental hypoxia. Static respirometry experiments were used to determine resistance, as measured by critical oxygen tension (Pcrit), and capacity for (RC) and magnitude of metabolic reduction (RM). Swimming respirometry experiments were used to determine aspects of resilience: critical (Ucrit) and optimal swimming speed (Uopt), and optimal cost of transport (COTopt). Results pertaining to metabolic reduction suggest a resistance gradient across species described by the inequality Melanotaenia fluviatilis (fast lifestyle) < Hypseleotris sp. (intermediate lifestyle) < Mogurnda adspersa (slow lifestyle). The Ucrit and COTopt data suggest a resilience gradient described by the reverse inequality, and so the experiments generally indicate that three fishes occupying different positions on the FSLC trade-off resistance and resilience to hypoxia. However, the scope of inferences that can be drawn from an individual study is narrow, and so steps towards general, trait-based rules of fish community change along environmental gradients are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号