首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objectives

In this study, we develop a microdensitometry method using full width at half maximum (FWHM) analysis of the retinal vascular structure in a spectral-domain optical coherence tomography (SD-OCT) image and present the application of this method in the morphometry of arteriolar changes during hypertension.

Methods

Two raters using manual and FWHM methods measured retinal vessel outer and lumen diameters in SD-OCT images. Inter-rater reproducibility was measured using coefficients of variation (CV), intraclass correlation coefficient and a Bland-Altman plot. OCT images from forty-three eyes of 43 hypertensive patients and 40 eyes of 40 controls were analyzed using an FWHM approach; wall thickness, wall cross-sectional area (WCSA) and wall to lumen ratio (WLR) were subsequently calculated.

Results

Mean difference in inter-rater agreement ranged from -2.713 to 2.658 μm when using a manual method, and ranged from -0.008 to 0.131 μm when using a FWHM approach. The inter-rater CVs were significantly less for the FWHM approach versus the manual method (P < 0.05). Compared with controls, the wall thickness, WCSA and WLR of retinal arterioles were increased in the hypertensive patients, particular in diabetic hypertensive patients.

Conclusions

The microdensitometry method using a FWHM algorithm markedly improved inter-rater reproducibility of arteriolar morphometric analysis, and SD-OCT may represent a promising noninvasive method for in vivo arteriolar morphometry.  相似文献   

2.
PurposeTo evaluate interobserver agreement for the detection of spectral-domain optical coherence tomography (SDOCT) features of diabetic macular edema (DME).MethodCross-sectional study in which 2 retinal specialists evaluated SDOCT scans from eyes receiving treatment for DME. Scans from 50 eyes with DME of 39 patients were graded for features of DME including intra-retinal fluid (IRF), diffuse retinal oedema (DRE), hyper-reflective foci (HRF), subretinal fluid (SRF), macular fluid and vitreomacular traction (VMT). Features were graded as present or absent at zones involving the fovea, 1mm from the fovea and the whole scan of 49 line scans. Analysis was performed using cross-tabulations for percentage concordance and kappa values (κ).ResultsIn the 2950 line scans analysed, there was an increase in percentage concordance for DRE and HRF when moving from a foveal line scan, 1mm zone and then to a whole scan analysis (88% vs 94% vs 96%) and (88% vs 94% vs 94%) respectively with κ ranging from substantial to almost perfect. Percentage concordance for SRF was 96% at all 3 regions analysed, whilst IRF was 96% at fovea and 98% at higher number of line-scans analysed. Concordance for MF was 100% at fovea and 98% at 1mm zone and whole scan with almost perfect and substantial κ respectively. κ agreement was substantial for VMT at all regions analysed.ConclusionWe report a high level of interobserver agreement in the detection of SDOCT features of DME. This finding is important as detection of macular fluid is used to guide retreatment with anti-angiogenic agents.  相似文献   

3.
4.
Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina.  相似文献   

5.
利用shear-warp算法对离体牙的光学相干层析图像进行三维重建,通过不透明度传递函数的合理设置及光照模型的引入实现牙齿内部组织结构的可视化,便于医生在早期龋齿诊断中定位病变.介绍了shear-warp算法的原理、用于龋齿检测的全光纤光学相干层析成像系统及其二维层析图,以及利用离体牙牙冠的二维层析图重建获得三维结构图.  相似文献   

6.

Purpose

To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa.

Methods

Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection.

Results

Structure-function relationships were accurately modeled (conditional R2>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R2 = 0.85, p<10−10). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates.

Conclusions

Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline.  相似文献   

7.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.  相似文献   

8.
光学相干层析成像(optical coherence tomography,OCT)技术是继X射线成像、核磁共振成像、超声成像等之后的一种新型的成像技术,其可光纤化的特点使得它易于医用电子内窥镜相结合。OCT内窥镜技术可实现对人体内部器官的高速率、高分辨率、无损伤、实时成像。主要介绍了OCT技术的种类、基本原理以及包括探测深度和纵向分辨率等的参数;简述了OCT内窥镜的发展历史以及最新成果,重点分析了光源对OCT内窥镜的影响。总结了OCT内窥镜的主要应用。  相似文献   

9.
Comparative analysis of two optical methods—optical coherence tomography (OCT) and optical coherence microscopy (OCM)—was made for vital visualization of plant tissues in tomato (Lycopersicon esculentum Mill), spiderwort (Tradescantia pallida (Rose) D. Hunt), orach (Atriplex sp.), and leaves and seeds of medium starwort (Stellaria media L.). The obtained OCT- and OCM-images allowed the morphological and functional state of plant tissues to be assessed in vivo. A higher spatial resolution of the OCM method, as compared to OCT method, allowed plant morphological structures to be identified with greater confidence. The morphological and functional state of tissues can be monitored with a time resolution of 1–4 s in intact plants, without removing them from the habitat.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 628–634.Original Russian Text Copyright © 2005 by Kutis, Sapozhnikova, Kuranov, Kamenskii.  相似文献   

10.
The internal structure of plant tissues was visualized with optical coherence tomography (OCT). This noninvasive method is suitable for examining intact plants; it produces two-dimensional images of plant tissues at a penetration depth of 1–2 mm from the surface. The potential use of OCT was assessed on Tradescantia blossfeldiana Mild. Plant tissue images measuring 1.5 × 2 mm were obtained in vivo with a spatial resolution of 15 m. The radiation power incident on a sample was 0.5 mW. The acquisition of a two-dimensional image consisting of 200 × 200 pixels required 1–3 s. The OCT method can be used to visualize not only plant tissues and tissue boundaries but also the structure of individual cells.  相似文献   

11.
介绍了分子对比剂在光学相干层析成像(optical coherence tom ography,OCT)技术中的研究现状,概述了迄今出现的几种不同的光学相干层析分子成像方法(m olecu lar contrast OCT,简称为MCOCT),讨论了MCOCT的几个重要的实际问题:对比剂的选择范围、激发光强的限制、各种方法灵敏度比较以及MCOCT应用于临床与生物学领域需要考虑的因素。  相似文献   

12.
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.  相似文献   

13.
For the first time, we present co-registered autofluorescence imaging and optical coherence tomography (AF/OCT) of excised human palatine tonsils to evaluate the capabilities of OCT to visualize tonsil tissue components. Despite limited penetration depth, OCT can provide detailed structural information about tonsil tissue with much higher resolution than that of computed tomography, magnetic resonance imaging, and Ultrasound. Different tonsil tissue components such as epithelium, dense connective tissue, lymphoid nodules, and crypts can be visualized by OCT. The co-registered AF imaging can provide matching biochemical information. AF/OCT scans may provide a non-invasive tool for detecting tonsillar cancers and for studying the natural history of their development.  相似文献   

14.
Understanding the nature and mechanism of congenital defects of the different organ systems in humans has heavily relied on the analysis of the corresponding mutant phenotypes in rodent models. Optical Coherence Tomography (OCT) has recently emerged as a powerful tool to study early embryonic development. This non-invasive optical methodology does not require labeling and allows visualization of embryonic tissues with single cell resolution. Here, we will discuss how OCT can be applied for structural imaging of early mouse and rat embryos in static culture, cardiodynamic and blood flow analysis, and in utero embryonic imaging at later stages of gestation, demonstrating how OCT can be used to assess structural and functional birth defects in mammalian models.  相似文献   

15.
Whole human or animal eyeballs are fixed in Heidcnhain's Susa 2-4 hr, the posterior chamber then opened by removing the anterior portion of the bulb and fixation continued for 3-6 hr. Mercurial precipitates are removed by 0.5% iodine in 80% alcohol, 2 changes of 2-4 hr each. Pieces of the bulbar wall, about 3 × 5 mm, are enclosed between two slices of formalin-fixed liver (dehydrated to 80% alcohol), bound with thread, dehydrated, and infiltrated with paraffin. The thread is then removed and the block cast.  相似文献   

16.
17.
光学相干层析成像技术(optical coherence tomography,OCT)在研究活体皮肤的表皮和真皮上层方面是一种很有潜力的手段.本文以小白鼠为研究对象,脱毛后,采用OCT系统对同一部位的小鼠皮肤在制作切片过程中(活体、离体、固定24 h后)进行成像跟踪,分别获得OCT强度图中第一强度峰到第一个波谷,以及第一、二强度峰之间的距离,比较两种结果和组织学的对应情况,并分析其原因,同时关注切片过程中各种物理、化学因素对皮肤各层厚度的影响,研究了OCT图像的各个反射峰与实际皮肤的结构之间联系.  相似文献   

18.

This work presents the analysis of the growth kinetics of two syntheses of concave gold nanocubes with a mean size of 72 and 108 nm followed by the optical coherence tomography (OCT) technique by acquiring B-scan images each 5 s. In addition, ultra violet-visible (UV-Vis) spectra and mean size from dynamic light scattering (DLS) were acquired during nanoparticle growth to generate kinetic plots in order to corroborate the OCT results. Kinetic plots from OCT images were obtained by plotting contrast enhancement of B-scan images as function of time. Fitting parameters values given by using the classical Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation show that the growth rate parameter k is higher for small cubes than for large ones, and that the Avrami exponent n associated to the growth kinetics of concave nanocubes is close to 2 for both syntheses. The results of UV-Vis spectroscopy and DLS confirm that OCT is a viable technique to provide information about nanoparticle growth kinetics. Moreover, to our knowledge, this is the first time that OCT technique is used to follow nanoparticle growth kinetics.

  相似文献   

19.
Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号