首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin (Ub) is one of the proteins that are highly conserved from yeast to humans. It is an essential core unit of the well-defined post-translational modification, called ubiquitination, which is involved in a variety of biological processes. In meta-zoans, Ub is encoded by two monoubiquitin genes and two polyubiquitin genes, in which a single Ub is fused to a ribosomal protein or Ub coding units are arranged in tandem repeats. In mice, polyubiquitin genes (Ubb and Ubc) play a pivotal role to meet the requirement of cellular Ub pools during embryonic development. In addition, expression levels of polyubiquitin genes are increased to adapt to environmental stimuli such as oxidative, heat-shock, and proteotoxic stress. Several researchers have reported about the perturbation of Ub pools through genetic alteration or exogenous Ub delivery using diverse model systems. To study Ub pool changes in a physiologically relevant manner, changing Ub pools via the regulation of endogenous polyubiquitin gene expression has recently been introduced. Furthermore, to understand the regulation of polyubiquitin gene expression more precisely, cis-acting elements and trans-acting factors, which are regulatory components of polyubiquitin genes, have been analyzed. In this review, we discuss how the role of polyu-biquitin genes has been studied during the past decade, es-pecially focusing on their regulation.  相似文献   

2.
Ubiquitin (Ub) is a posttranslational modifier, and total Ub (UbT) is always in dynamic equilibrium among free Ub (UbF), activated Ub (UbA), and conjugated Ub (UbC) in the forms of mono-Ub, thioester-bond-linked Ub, and peptide-bond-linked Ub, respectively. In this study, we developed a simple method to simultaneously determine the levels of UbT, UbF + UbA, and UbC in a single immunoblot and demonstrated its reliability and reproducibility by determining [UbT], [UbF + UbA], and [UbC] in various mouse tissues and cultured cells.  相似文献   

3.
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.  相似文献   

4.
SUMOylation and ubiquitination are two essential post translational modifications (PTMs) involved in the regulation of important biological processes in eukaryotic cells. Identification of ubiquitin (Ub) and small ubiquitin-related modifier (SUMO)-conjugated lysine residues in proteins is critical for understanding the role of ubiquitination and SUMOylation, but remains experimentally challenging. We have developed a powerful in vitro Ub/SUMO assay using a novel high density peptide array incorporated within a microfluidic device that allows rapid identification of ubiquitination and SUMOylation sites on target proteins. We performed the assay with a panel of human proteins and a microbial effector with known target sites for Ub or SUMO modifications, and determined that 80% of these proteins were modified by Ub or specific SUMO isoforms at the sites previously determined using conventional methods. Our results confirm the specificity for both SUMO isoform and individual target proteins at the peptide level. In summary, this microfluidic high density peptide array approach is a rapid screening assay to determine sites of Ub and SUMO modification of target substrates, which will provide new insights into the composition, selectivity and specificity of these PTM target sites.  相似文献   

5.
The ubiquitin-proteasome system is essential for maintaining a functional cell. Not only does it remove incorrectly folded proteins, it also regulates protein levels to ensure their appropriate spatial and temporal distribution. Proteins marked for degradation by the addition of Lys48-linked ubiquitin (Ub) chains are recognized by shuttle factors and transported to the 26 S proteasome. One of these shuttle factors, Schizosaccharomyces pombe Rhp23, has an unusual domain architecture. It comprises an N-terminal ubiquitin-like domain that can recognize the proteasome followed by two ubiquitin-associated (UBA) domains, termed UBA1 and UBA2, which can bind Ub. This architecture is conserved up to humans, suggesting that both domains are important for Rhp23 function. Such an extent of conservation raises the question as to why, in contrast to all other shuttle proteins, does Rhp23 require two UBA domains? We performed in vitro Ub binding assays using domain swap chimeric proteins and mutated domains in isolation as well as in the context of the full-length protein to reveal that the Ub binding properties of the UBA domains are context-dependent. In vivo, the internal Rhp23 UBA1 domain provides sufficient Ub recognition for the protein to function without UBA2.  相似文献   

6.
Levels of ubiquitin (Ub)-conjugated proteins, as an index of misfolded or damaged proteins, were measured in notothenioid fishes, with both Antarctic (Trematomus bernacchii, T. pennellii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) distributions, as well as non-notothenioid fish from the Antarctic (Lycodichthys dearborni, Family Zoarcidae) and New Zealand (Bellapiscis medius, Family Tripterygiidae), in an effort to better understand the effect that inhabiting a sub-zero environment has on maintaining the integrity of the cellular protein pool. Overall, levels of Ub-conjugated proteins in cold-adapted Antarctic fishes were significantly higher than New Zealand fishes in gill, liver, heart and spleen tissues suggesting that life at sub-zero temperatures impacts protein homeostasis. The highest tissue levels of ubiquitinated proteins were found in the spleen of all fish. Ub conjugate levels in the New Zealand N. angustata, more closely resembled levels measured in other Antarctic fishes than levels measured in other New Zealand species, likely reflecting their recent shared ancestry with Antarctic notothenioids.  相似文献   

7.
Previously, we demonstrated that disruption of polyubiquitin gene Ubb leads to hypothalamic neurodegeneration and metabolic abnormalities associated with hypothalamic dysfunction. However, we cannot exclude the possibility that defects in other brain regions where Ubb is highly expressed may also contribute to the phenotypes exhibited by Ubb(-/-) mice. Upon searching for such brain regions, we identified a region in the brainstem called the locus coeruleus where both polyubiquitin genes Ubb and Ubc were highly expressed. In contrast to other brain regions, Ubc was significantly upregulated in the locus coeruleus of Ubb(-/-) mice presumably to compensate for loss of Ubb, and this upregulation was sufficient to maintain levels of free Ub, but not total Ub, in the locus coeruleus. However, in the hypothalamus of Ubb(-/-) mice, both free and total Ub levels significantly decreased. This discrepancy resulted in completely different phenotypic outcomes between the two different brain regions. While we have reported dysfunction and degeneration of hypothalamic neurons in adult Ubb(-/-) mice, there were no signs of functional impairment or degeneration in the locus coeruleus neurons, suggesting that the maintenance of free Ub above threshold levels could be an important mechanism for neuronal protection. Accordingly, we propose that, upon stress induced by disruption of Ubb, neuronal vulnerability may be determined based on the ability of neurons or neighboring cells to maintain free Ub levels for the protection of neuronal function and survival.  相似文献   

8.
9.
The modification of cellular proteins by ubiquitin (Ub) is an important event that underlies protein stability and function in eukaryotes. Protein ubiquitylation is a dynamic and reversible process; attached Ub can be removed by deubiquitylating enzymes (DUBs), a heterogeneous group of cysteine proteases that cleave proteins precisely at the Ub–protein bond. Two families of DUBs have been identified previously. Here, we describe new, highly specific Ub iso-peptidases, that have no sequence homology to known DUBs, but which belong to the OTU (ovarian tumour) superfamily of proteins. Two novel proteins were isolated from HeLa cells by affinity purification using the DUB-specific inhibitor, Ub aldehyde (Ubal). We have named these proteins otubain 1 and otubain 2, for OTU-domain Ubal-binding protein. Functional analysis of otubains shows that the OTU domain contains an active cysteine protease site.  相似文献   

10.
The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.  相似文献   

11.
E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain function is the control of ligase activity and specificity. Here we present a functional analysis of the HECT domain of the E3 ligase HUWE1 based on crystal structures and show that a single N-terminal helix significantly stabilizes the HECT domain. We observe that this element modulates HECT domain activity, as measured by self-ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle changes to the protein may be at the heart of the vast spectrum of substrate specificities displayed by HECT domain E3 ligases.  相似文献   

12.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

13.
Ubiquitin (Ub) and the ubiquitin-like proteins (UBLs) mediate an array of cellular functions. These proteins contain a C-terminal glycine residue that is key to their function. Oxidative conversion of C-terminal glycine-extended prohormones to the corresponding alpha-amidated peptide is one step in the biosynthesis of bioactive peptide hormones. The enzyme catalyzing this reaction is peptidylglycine alpha-amidating monooxygenase (PAM). We report herein that Ub is a PAM substrate with a (V/K)(amidation) that is similar to other known peptide substrates. This work is significant because PAM and the UBLs co-localize to the hypothalamus and the adrenal medulla and are both over-expressed in glioblastomas.  相似文献   

14.
Mammalian cells have developed specific pathways for the incorporation, remodeling, and release of arachidonic acid. Acyltransferase and transacylase pathways function to regulate the levels of esterified arachidonic acid in specific phospholipid pools. There are several distinct, differentially regulated phospholipases A2 in cells that mediate agonist-induced release of arachidonic acid. These pathways are important in controlling cellular levels of free arachidonic acid. Both arachidonic acid and its oxygenated metabolites are potent bioactive mediators that regulate a myriad of physiological and pathophysiological processes.  相似文献   

15.
The identification of ubiquitin (Ub) and Ub‐like protein (Ubl) conjugation sites is important in understanding their roles in biological pathway regulations. However, unambiguously and sensitively identifying Ub/Ubl conjugation sites through high‐throughput MS remains challenging. We introduce an improved workflow for identifying Ub/Ubl conjugation sites based on the ChopNSpice and X!Tandem software. ChopNSpice is modified to generate Ub/Ubl conjugation peptides in the form of a cross‐link. A combinatorial FASTA database can be acquired using the modified ChopNSpice (MchopNSpice). The modified X!Tandem (UblSearch) introduces a new fragmentation model for the Ub/Ubl conjugation peptides to match unambiguously the MS/MS spectra with linear peptides or Ub/Ubl conjugation peptides using the combinatorial FASTA database. The novel workflow exhibited better performance in analyzing an Ub and Ubl spectral library and a large‐scale Trypanosoma cruzi small Ub‐related modifier dataset compared with the original ChopNSpice method. The proposed workflow is more suitable for processing large‐scale MS datasets of Ub/Ubl modification. MchopNSpice and UblSearch are freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/maublsearch .  相似文献   

16.
We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8+ T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8+ T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8+ T cells.  相似文献   

17.
18.
Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove ubiquitin (Ub) and interferon stimulated gene product 15 (ISG15) from numerous proteins involved in cellular signaling. Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the structural plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHFV vOTU, both alone and in complex with Ub, discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHFV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.  相似文献   

19.
Jiao Yang  Hong Peng  Yumin Xu 《Autophagy》2018,14(6):1072-1073
The alterations in cellular ubiquitin (Ub) homeostasis, known as Ub stress, feature and affect cellular responses in multiple conditions, yet the underlying mechanisms are incompletely understood. We recently reported that the macroautophagy/autophagy receptor SQSTM1/p62, functions as a novel Ub sensor to activate autophagy upon Ub+ stress (upregulation of the Ub level). First, SQSTM1 was found to undergo extensive ubiquitination and activate autophagy under Ub+ stress induced by prolonged Bortezomib (BTZ) treatment, Ub overexpression or by heat shock. Mechanistically, Ubiquitination of SQSTM1 disrupts its dimerization of the UBA domain, switching it from an auto-inhibitory conformation to recognize poly-ubiquitinated cargoes, promoting autophagic flux. Interestingly, Ub+ stress-responsive SQSTM1 ubiquitination is mediated by Ub conjugating enzymes, UBE2D2/3, in a unique E2-dependent manner. Our work has thus revealed a novel mechanism for how SQSTM1 senses cellular Ub stress conditions and regulates selective autophagy in response to diverse intrinsic or extrinsic challenges.  相似文献   

20.
Deubiquitinating enzymes (DUBs) control the ubiquitination status of proteins in various cellular pathways. Regulation of the activity of DUBs, which is critically important to cellular homoeostasis, can be achieved at the level of gene expression, protein complex formation, or degradation. Here, we report that ubiquitination also directly regulates the activity of a DUB, ataxin‐3, a polyglutamine disease protein implicated in protein quality control pathways. Ubiquitination enhances ubiquitin (Ub) chain cleavage by ataxin‐3, but does not alter its preference for K63‐linked Ub chains. In cells, ubiquitination of endogenous ataxin‐3 increases when the proteasome is inhibited, when excess Ub is present, or when the unfolded protein response is induced, suggesting that the cellular functions of ataxin‐3 in protein quality control are modulated through ubiquitination. Ataxin‐3 is the first reported DUB in which ubiquitination directly regulates catalytic activity. We propose a new function for protein ubiquitination in regulating the activity of certain DUBs and perhaps other enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号