首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we describe an association between α3β1 integrin and transmembrane-4 superfamily (TM4SF) protein CD151. This association is maintained in relatively stringent detergents and thus is remarkably stable in comparison with previously reported integrin–TM4SF protein associations. Also, the association is highly specific (i.e., observed in vitro in absence of any other cell surface proteins), and highly stoichiometric (nearly 90% of α3β1 associated with CD151). In addition, α3β1 and CD151 appeared in parallel on many cell lines and showed nearly identical skin staining patterns. Compared with other integrins, α3β1 exhibited a considerably higher level of associated phosphatidylinositol-4-kinase (PtdIns 4-kinase) activity, most of which was removed upon immunodepletion of CD151. Specificity for CD151 and PtdIns 4-kinase association resided in the extracellular domain of α3β1, thus establishing a novel paradigm for the specific recruitment of an intracellular signaling molecule. Finally, antibodies to either CD151 or α3β1 caused a ~88–92% reduction in neutrophil motility in response to f-Met-Leu-Phe on fibronectin, suggesting an functionally important role of these complexes in cell migration.  相似文献   

2.
Adherent cells in culture maintain a polarized state to support movement and intercellular interactions. Nanopodia are thin, elongated, largely F-actin-negative membrane projections in endothelial and cancer cells that can be visualized through TM4SF1 (Transmembrane-4-L-six-family-1) immunofluorescence staining. TM4SF1 clusters in 100-300 μm diameter TMED (TM4SF1 enriched microdomains) containing 3 to as many as 14 individual TM4SF1 molecules. TMED are arranged intermittently along nanopodia at a regular spacing of 1 to 3 TMED per μm and firmly anchor nanopodia to matrix. This enables nanopodia to extend more than 100 μm from the leading front or trailing rear of polarized endothelial or tumor cells, and causes membrane residues to be left behind on matrix when the cell moves away. TMED and nanopodia have been overlooked because of their extreme fragility and sensitivity to temperature. Routine washing and fixation disrupt the structure. Nanopodia are preserved by direct fixation in paraformaldehyde (PFA) at 37 °C, followed by brief exposure to 0.01% Triton X-100 before staining. Nanopodia open new vistas in cell biology: they promise to reshape our understanding of how cells sense their environment, detect and identify other cells at a distance, initiate intercellular interactions at close contact, and of the signaling mechanisms involved in movement, proliferation, and cell-cell communications. The methods that are developed for studying TM4SF1-derived nanopodia may be useful for studies of nanopodia that form in other cell types through the agency of classic tetraspanins, notably the ubiquitously expressed CD9, CD81, and CD151.  相似文献   

3.
Studying the tight activity regulation of platelet-specific integrin αIIbβ3 is foundational and paramount to our understanding of integrin structure and activation. αIIbβ3 is essential for the aggregation and adhesion function of platelets in hemostasis and thrombosis. Structural and mutagenesis studies have previously revealed the critical role of αIIbβ3 transmembrane (TM) association in maintaining the inactive state. Gain-of-function TM mutations were identified and shown to destabilize the TM association leading to integrin activation. Studies using isolated TM peptides have suggested an altered membrane embedding of the β3 TM α-helix coupled with αIIbβ3 activation. However, controversies remain as to whether and how the TM α-helices change their topologies in the context of full-length integrin in native cell membrane. In this study, we utilized proline scanning mutagenesis and cysteine scanning accessibility assays to analyze the structure and function correlation of the αIIbβ3 TM domain. Our identification of loss-of-function proline mutations in the TM domain suggests the requirement of a continuous TM α-helical structure in transmitting activation signals bidirectionally across the cell membrane, characterized by the inside-out activation for ligand binding and the outside-in signaling for cell spreading. Similar results were found for αLβ2 and α5β1 TM domains, suggesting a generalizable mechanism. We also detected a topology change of β3 TM α-helix within the cell membrane, but only under conditions of cell adhesion and the absence of αIIb association. Our data demonstrate the importance of studying the structure and function of the integrin TM domain in the native cell membrane.  相似文献   

4.
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies.  相似文献   

5.
ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL.  相似文献   

6.
Large-conductance voltage- and calcium-activated potassium (BK) channels contain four pore-forming α subunits and four modulatory β subunits. From the extents of disulfide cross-linking in channels on the cell surface between cysteine (Cys) substituted for residues in the first turns in the membrane of the S0 transmembrane (TM) helix, unique to BK α, and of the voltage-sensing domain TM helices S1–S4, we infer that S0 is next to S3 and S4, but not to S1 and S2. Furthermore, of the two β1 TM helices, TM2 is next to S0, and TM1 is next to TM2. Coexpression of α with two substituted Cys’s, one in S0 and one in S2, and β1 also with two substituted Cys’s, one in TM1 and one in TM2, resulted in two αs cross-linked by one β. Thus, each β lies between and can interact with the voltage-sensing domains of two adjacent α subunits.  相似文献   

7.
8.
The G-protein coupled receptor (GPCR), Cysteine (C)-X-C Receptor 4 (CXCR4), plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane. An emerging concept for G-protein coupled receptors is that they may localize to and associate with the nucleus where they retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 associated with the nucleus of malignant prostate cancer tissues. Likewise, expression of CXCR4 was detected in nuclear fractions among several prostate cancer cell lines, compared to normal prostate epithelial cells. Our studies identified a nuclear pool of CXCR4 and we defined a nuclear transport pathway for CXCR4. We reveal a putative nuclear localization sequence (NLS), ‘RPRK’, within CXCR4 that contributed to nuclear localization. Additionally, nuclear CXCR4 interacted with Transportinβ1 and Transportinβ1-binding to CXCR4 promoted its nuclear translocation. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicated that nuclear CXCR4 was functional and participated in G-protein signaling, revealing that the nuclear pool of CXCR4 retained function. Given the suggestion that functional, nuclear CXCR4 may be a mechanism underlying prostate cancer recurrence, increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4, these studies addresses a novel mechanism of nuclear signaling for CXCR4, a novel mechanism of clinical targeting, and demonstrate an active nuclear pool that provides important new information to illuminate what has been primarily clinical reports of nuclear CXCR4.  相似文献   

9.
The Wnt pathway is a key regulator of development and tumorigenesis. Dpr (Dact/Frodo) influences Wnt signaling in part through the interaction of its PDZ-B domain with Dsh''s PDZ domain. Studies have shown that XDpr1a and its close relative, Frodo, are involved in multiple steps of the Wnt pathway in either inhibitory or activating roles. We found that XDpr1a is phosphorylated by casein kinase Iδ/ε (CKIδ/ε), an activator of Wnt signaling, in the presence of XDsh. Abrogating XDpr1a''s ability to bind XDsh through mutation of XDpr1a''s PDZ-B domain blocks CK1δ/ε''s phosphorylation of XDpr1a. Conversely, XDsh possessing a mutation in its PDZ domain that is unable to bind XDpr1a does not promote XDpr1a phosphorylation. Phosphorylation of XDpr1a and XDsh by CKIδ/ε decreases their interaction. Moreover, the phosphorylation of XDpr1a by CKIδ/ε not only abrogates XDpr1a''s promotion of β-catenin degradation but blocks β-catenin degradation. Our data suggest that XDpr1a phosphorylation by CKIδ/ε is dependent on the interaction of XDpr1a''s PDZ-B domain with XDsh''s PDZ domain, and that the phosphorylation state of XDpr1a determines whether it inhibits or activates Wnt signaling.  相似文献   

10.
Voltage/Ca2+ i-gated, large conductance K+ (BK) channels result from tetrameric association of α (slo1) subunits. In most tissues, BK protein complexes include regulatory β subunits that contain two transmembrane domains (TM1, TM2), an extracellular loop, and two short intracellular termini. Four BK β types have been identified, each presenting a rather selective tissue-specific expression profile. Thus, BK β modifies current phenotype to suit physiology in a tissue-specific manner. The smooth muscle-abundant BK β1 drastically increases the channel''s apparent Ca2+ i sensitivity. The resulting phenotype is critical for BK channel activity to increase in response to Ca2+ levels reached near the channel during depolarization-induced Ca2+ influx and myocyte contraction. The eventual BK channel activation generates outward K+ currents that drive the membrane potential in the negative direction and eventually counteract depolarization-induced Ca2+ influx. The BK β1 regions responsible for the characteristic phenotype of β1-containing BK channels remain to be identified. We used patch-clamp electrophysiology on channels resulting from the combination of smooth muscle slo1 (cbv1) subunits with smooth muscle-abundant β1, neuron-abundant β4, or chimeras constructed by swapping β1 and β4 regions, and determined the contribution of specific β1 regions to the BK phenotype. At Ca2+ levels found near the channel during myocyte contraction (10 µM), channel complexes that included chimeras having both TMs from β1 and the remaining regions (“background”) from β4 showed a phenotype (Vhalf, τact, τdeact) identical to that of complexes containing wt β1. This phenotype could not be evoked by complexes that included chimeras combining either β1 TM1 or β1 TM2 with a β4 background. Likewise, β “halves” (each including β1 TM1 or β1 TM2) resulting from interrupting the continuity of the EC loop failed to render the normal phenotype, indicating that physical connection between β1 TMs via the EC loop is also necessary for proper channel function.  相似文献   

11.
Large-conductance voltage- and Ca2+-gated K+ channels are negative-feedback regulators of excitability in many cell types. They are complexes of α subunits and of one of four types of modulatory β subunits. These have intracellular N- and C-terminal tails and two transmembrane (TM) helices, TM1 and TM2, connected by an ∼100-residue extracellular loop. Based on endogenous disulfide formation between engineered cysteines (Cys), we found that in β2 and β3, as in β1 and β4, TM1 is closest to αS1 and αS2 and TM2 is closest to αS0. Mouse β3 (mβ3) has seven Cys in its loop, one of which is free, and this Cys readily forms disulfides with Cys substituted in the extracellular flanks of each of αS0–αS6. We identified by elimination mβ3-loop Cys152 as the only free Cys. We inferred the disulfide-bonding pattern of the other six Cys. Using directed proteolysis and fragment sizing, we determined this pattern first among the four loop Cys in β1. These are conserved in β2–β4, which have four additional Cys (eight in total), except that mβ3 has one fewer. In β1, disulfides form between Cys at aligned positions 1 and 8 and between Cys at aligned positions 5 and 6. In mβ3, the free Cys is at position 7; position 2 lacks a Cys present in all other β2–β4; and the disulfide pattern is 1–8, 3–4, and 5–6. Presumably, Cys 2 cross-links to Cys 7 in all other β2–β4. Cross-linking of mβ3 Cys152 to Cys substituted in the flanks of αS0–S5 attenuated the protection against iberiotoxin (IbTX); cross-linking of Cys152 to K296C in the αS6 flank and close to the pore enhanced protection against IbTX. In no case was N-type inactivation by the N-terminal tail of mβ3 perturbed. Although the mβ3 loop can move, its position with Cys152 near αK296, in which it blocks IbTX binding, is likely favored.  相似文献   

12.
Cationic membrane-proximal amino acids determine the topology of membrane proteins by interacting with anionic lipids that are restricted to the intracellular membrane leaflet. This mechanism implies that anionic lipids interfere with electrostatic interactions of membrane proteins. The integrin αIIbβ3 transmembrane (TM) complex is stabilized by a membrane-proximal αIIb(Arg995)-β3(Asp723) interaction; here, we examine the influence of anionic lipids on this complex. Anionic lipids compete for αIIb(Arg995) contacts with β3(Asp723) but paradoxically do not diminish the contribution of αIIb(Arg995)-β3(Asp723) to TM complex stability. Overall, anionic lipids in annular positions stabilize the αIIbβ3 TM complex by up to 0.50 ± 0.02 kcal/mol relative to zwitterionic lipids in a headgroup structure-dependent manner. Comparatively, integrin receptor activation requires TM complex destabilization of 1.5 ± 0.2 kcal/mol, revealing a sizeable influence of lipid composition on TM complex stability. We implicate changes in lipid headgroup accessibility to small molecules (physical membrane characteristics) and specific but dynamic protein-lipid contacts in this TM helix-helix stabilization. Thus, anionic lipids in ubiquitous annular positions can benefit the stability of membrane proteins while leaving membrane-proximal electrostatic interactions intact.  相似文献   

13.
14.
Wnt/β‐catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β‐catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell‐specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β‐catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β‐catenin to stabilize β‐catenin–TCF4 complex and facilitate the transactivation of Wnt/β‐catenin signaling targets. Accordingly, activated β‐catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β‐catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.  相似文献   

15.
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.Subject terms: Cryoelectron microscopy, Cell signalling  相似文献   

16.
Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Hepatic TM4SF5 promotes EMT for malignant growth and migration. Hepatocellular carcinoma (HCC) biomarkers remain unexplored for metastatic potential throughout metastasis. Here, novel TM4SF5/CD44 interaction-mediated self-renewal and circulating tumor cell (CTC) capacities were mechanistically explored. TM4SF5-dependent sphere growth was correlated with CD133+, CD24-, ALDH activity, and a physical association between CD44 and TM4SF5. The TM4SF5/CD44 interaction activated c-Src/STAT3/ Twist1/ B mi1 signaling for spheroid formation, while disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts of less than 5,000 cells/injection, TM4SF5-positive tumors exhibited locally-increased CD44 expression, suggesting tumor cell differentiation. TM4SF5-positive cells were identified circulating in blood 4 to 6 weeks after orthotopic liver-injection. Anti-TM4SF reagents blocked their metastasis to distal intestinal organs. Altogether, our results provide evidence that TM4SF5 promotes self-renewal and CTC properties supported by CD133+/TM4SF5+/CD44+(TM4SF5-bound)/ALDH+/ CD24- markers during HCC metastasis. [BMB Reports 2015; 48(3): 127-128]  相似文献   

17.
Integrin activation is a multifaceted phenomenon leading to increased affinity and avidity for matrix ligands. To investigate whether cytokines produced during stromal infiltration of carcinoma cells activate nonfunctional epithelial integrins, a cellular system of human thyroid clones derived from normal glands (HTU-5) and papillary carcinomas (HTU-34) was employed. In HTU-5 cells, αvβ3 integrin was diffused all over the membrane, disconnected from the cytoskeleton, and unable to mediate adhesion. Conversely, in HTU-34 cells, αvβ3 was clustered at focal contacts (FCs) and mediated firm attachment and spreading. αvβ3 recruitment at FCs and ligand-binding activity, essentially identical to those of HTU-34, occurred in HTU-5 cells upon treatment with hepatocyte growth factor/scatter factor (HGF/SF). The HTU-34 clone secreted HGF/SF and its receptor was constitutively tyrosine phosphorylated suggesting an autocrine loop responsible for αvβ3 activated state. Antibody-mediated inhibition of HGF/SF function in HTU-34 cells disrupted αvβ3 enrichment at FCs and impaired adhesion. Accordingly, activation of αvβ3 in normal cells was produced by HTU-34 conditioned medium on the basis of its content of HGF/SF. These results provide the first example of a growth factor–driven integrin activation mechanism in normal epithelial cells and uncover the importance of cytokine-based autocrine loops for the physiological control of integrin activation.  相似文献   

18.
The large-conductance, voltage- and Ca2+-gated K+ (BK) channel consists of four α subunits, which form a voltage- and Ca2+-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance–voltage (G-V) curve to the left at [Ca2+] > 2 µM. In addition to the six transmembrane (TM) helices, S1–S6, conserved in all voltage-dependent K+ channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2–S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2–S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2–S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2–S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50.  相似文献   

19.
20.
Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ∼5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号