首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A basic question concerning microtubule assembly is the polarity of growth, namely, whether subunits can add to either end of a growing microtubule or whether growth proceeds by subunit addition to only one end. To approach this question in an in vitro system, experiments were carried out on the addition of microtubule subunits to isolated flagellar axonemes. Flagella were detached from Chlamydomonas by brief treatment with non-ionic detergent, isolated by differential centrifugation, and incubated with crude high-speed extracts of porcine brain tissue or with purified tubulin (obtained by repetitive temperature-dependent assembly and disassembly). Electron microscopy of negatively stained samples showed as many as 11 long microtubules added at one end of more than 90% of the axonemes. Colchicine (100 μm), CaCl2 (2.5 mm), and low temperature (0 °C) both prevented and reversed microtubule assembly but had no effect on axonemal length. In crude extracts microtubules formed on both members of the axonemal central pair but on only the A-tubule of the outer doublets. Flagellar fragments, produced by mechanical shearing, were also incubated with microtubule subunit. Single tubules formed at only one end of outer doublet fragments; the appearance of single tubules on one or both members of central pair fragments was predominantly unidirectional. Structural analysis of frayed axonemes and the asymmetry of side-arm attachments permitted the absolute polarity of the axonemal fragments to be determined and revealed that assembly proceeded by addition of subunits to the distal ends of the axonemal microtubules. Using purified brain tubulin, a limited extent of proximal addition and growth on the B-tubule also occurred. The extent of proximal addition increased with increasing protein concentration and temperature. We conclude that the microtubules of flagella have an intrinsic polarity reflected in their side-arm attachments and in their directionality of growth.  相似文献   

2.
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.  相似文献   

3.
Cilia and flagella play multiple essential roles in animal development and cell physiology. Defective cilium assembly or motility represents the etiological basis for a growing number of human diseases. Therefore, how cilia and flagella assemble and the processes that drive motility are essential for understanding these diseases. Here we show that Drosophila Bld10, the ortholog of Chlamydomonas reinhardtii Bld10p and human Cep135, is a ubiquitous centriolar protein that also localizes to the spermatid basal body. Mutants that lack Bld10 assemble centrioles and form functional centrosomes, but centrioles and spermatid basal bodies are short in length. bld10 mutant flies are viable but male sterile, producing immotile sperm whose axonemes are deficient in the central pair of microtubules. These results show that Drosophila Bld10 is required for centriole and axoneme assembly to confer cilium motility.  相似文献   

4.
The centriole is a minute cylindrical organelle present in a wide range of eukaryotic species. Most centrioles have a signature ninefold radial symmetry of microtubules that is imparted to the axonemes of the cilia and flagella they template, with nine centriolar microtubule doublets growing into nine axonemal microtubule doublets. There are exceptions to the ninefold symmetrical arrangement of axonemal microtubules in some species, with lower or higher fold symmetries. In the few cases where this has been examined, such alterations in axonemal symmetries are grounded in similar alterations in centriolar symmetries. Here, we examine the question of microtubule number continuity between centriole and axoneme in flagellated gametes of the gregarine Lecudina tuzetae, which have been reported to exhibit a sixfold radial symmetry of axonemal microtubules. We used time-lapse differential interference microscopy to identify the stage at which flagellated gametes are present. Thereafter, using electron microscopy and ultrastructure-expansion microscopy coupled to stimulated emission depletion superresolution imaging, we uncover that a six- or fivefold radial symmetry in the axoneme is accompanied by an eightfold radial symmetry in the centriole. We conclude that the transition between centriolar and axonemal microtubules can be characterized by unexpected plasticity.  相似文献   

5.
Axonemes of motile eukaryotic cilia and flagella have a conserved structure of nine doublet microtubules surrounding a central pair of microtubules. Outer and inner dynein arms on the doublets mediate axoneme motility [1]. Outer dynein arms (ODAs) attach to the doublets at specific interfaces [2-5]. However, the molecular contacts of ODA-associated proteins with tubulins of the doublet microtubules are not known. We report here that attachment of ODAs requires glycine 56 in the beta-tubulin internal variable region (IVR). We show that in Drosophila spermatogenesis, a single amino acid change at this position results in sperm axonemes markedly deficient in ODAs. Moreover, we found that axonemal beta-tubulins throughout the phylogeny have invariant glycine 56 and a strongly conserved IVR, whereas nonaxonemal beta-tubulins vary widely in IVR sequences. Our data reveal a deeply conserved physical requirement for assembly of the macromolecular architecture of the motile axoneme. Amino acid 56 projects into the microtubule lumen [6]. Imaging studies of axonemes indicate that several proteins may interact with the doublet-microtubule lumen [3, 4, 7, 8]. This region of beta-tubulin may determine the conformation necessary for correct attachment of ODAs, or there may be sequence-specific interaction between beta-tubulin and a protein involved in ODA attachment or stabilization.  相似文献   

6.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

7.
Outer arm dynein is a molecular motor that is positioned at 24 nm intervals on outer doublet microtubules in cilia and flagella. In the present paper, we report identification of a 58 kDa novel protein with a tetratricopeptide repeat (TPR), referred to as ap58 (for 58 kDa axonemal protein) in sea urchin sperm axonemes. Ap58 is extracted along with the outer arm dynein by a high salt solution from axonemes. Sucrose density gradient centrifugation or gel filtration of the extract separates the outer arm dynein core from ap58. Most ap58 sediments to the lower density fraction or elutes in fractions of smaller molecules. However, immunogold localization reveals that ap58 is distributed at approximately 25 nm intervals on doublet microtubules, suggesting that in situ it is associated with the outer dynein arm. Thus, ap58 with the TPR motif is a new member of outer dynein arm-binding proteins distinct from the outer dynein arm-docking complex.  相似文献   

8.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

9.
Methods were developed for the isolation of Chlamydomonas flagella and for their fractionation into membrane, mastigoneme, "matrix," and axoneme components. Each component was studied by electron microscopy and acrylamide gel electrophoresis. Purified membranes retained their tripartite ultrastructure and were shown to contain one high molecular weight protein band on electrophoresis in sodium dodecyl sulfate (SDS)-urea gels. Isolated mastigonemes (hairlike structures which extend laterally from the flagellar membrane in situ) were of uniform size and were constructed of ellipsoidal subunits joined end to end. Electrophoretic analysis of mastigonemes indicated that they contained a single glycoprotein of ~ 170,000 daltons The matrix fraction contained a number of proteins (particularly those of the amorphous material surrounding the microtubules), which became solubilized during membrane removal. Isolated axonemes retained the intact "9 + 2" microtubular structure and could be subfractionated by treatment with heat or detergent. Increasing concentrations of detergent solubilized axonemal microtubules in the following order: one of the two central tubules; the remaining central tubule and the outer wall of the B tubule; the remaining portions of the B tubule; the outer wall of the A tubule; the remainder of the A tubule with the exception of a ribbon of three protofilaments. These three protofilaments appeared to be the "partition" between the lumen of the A and B tubule. Electrophoretic analysis of isolated outer doublets of 9 + 2 flagella of wild-type cells and of "9 + 0" flagella of paralyzed mutants indicated that the outer doublets and central tubules were composed of two microtubule proteins (tubulins 1 and 2) Tubulins 1 and 2 were shown to have apparent molecular weights of 56,000 and 53,000 respectively  相似文献   

10.
The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the ODA-DC were used to analyze its state of association with outer arm components within the cytoplasm, and its localization in the axonemes of oda mutants. Immunoprecipitation indicates that DC83 and DC62 are preassembled within the cytoplasm, but that they are not associated with outer arm dynein. Both proteins are lost or greatly diminished in oda1 and oda3, mutants in the structural genes of DC62 and DC83, respectively, demonstrating that their association is necessary for their stable presence in the cytoplasm. Immunoelectron microscopy indicates that DC83 repeats at 24-nm intervals along the length of the doublet microtubules of oda6, which lacks outer arms; thus, outer arm periodicity may be determined by the ODA-DC. Flagellar regeneration and temporary dikaryon experiments indicate that the ODA-DC can be rapidly transported into the flagellum and assembled on the doublet microtubules independently of the outer arms and independently of flagellar growth. Unexpectedly, the intensity of ODA-DC labeling decreased toward the distal ends of axonemes of oda6 but not wild-type cells, suggesting that the outer arms reciprocally contribute to the assembly/stability of the ODA-DC.  相似文献   

11.
12.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

13.
The shape and propagation of waves produced by eukaryotic flagella depend on the three-dimensional arrangement and physical-chemical properties of peripheral substructures. The modeling analysis presented here, which assumes force-moment equilibrium and neglects the viscous resistances of the medium, shows how substructural arrangements characteristic of 9+0, 9+1, and 9+2 axonemes can yield their characteristic wave patterns. When flexural stiffnesses are equal along all axonemal radii, any non-uniform doublet shearing pattern propagated distally at constant rate, with successive pairs 19 cycle out of phase, should generate helical waves. When stiffnesses differ greatly on different radii, but the stiffness pattern is the same for all cross-sections, any such shearing pattern should yield planar waves resembling sine-generated curves.Propagated axonemal bending results from the active bending moment produced by local shearing of doublet pairs. Uniformly twisting the doublets about the axonemal axis cannot directly alter the magnitude of the active bending moment. If dynein cross-bridges are activated by shear displacement between peripheral doublets, then the resulting distribution of the active bending moment will be appropriate for balancing the elastic moment in a propagated bending wave.  相似文献   

14.
A homologue of mammalian PACRG was identified in Sarkosyl-extracted Chlamydomonas axonemes as a protein that may interact with Rib72 (a component of the protofilament ribbon within the outer doublet microtubules). PACRG is a protein whose expression is co-regulated with the Parkin gene implicated in Parkinson's disease. Although subsequent analyses did not confirm a Rib72-PACRG interaction, both proteins display similar localization in the axoneme. Immuno-localization of PACRG required pretreatment of the axoneme with Sarkosyl, suggesting that the antigen is buried in the wall of the microtubule. Indirect immunofluorescence localized PACRG to the entire length of the axoneme and the basal body, and immuno-electron microscopy showed that the PACRG antigen is densely distributed along the outer doublets in frayed axonemes. In thin-section images, the PACRG signals were frequently found between the A- and B-tubules of adjacent outer doublets. From these and other results, we propose that PACRG is a structural component of the doublet and triplet microtubules possibly involved in inter-tubule linkage.  相似文献   

15.
Summary. We present a new Chlamydomonas reinhardtii flagellar mutant in which central pair projections are missing and the central pair microtubules are twisted along the length of the flagellum. We have named this mutant tcp1 for twisted central pair. Immunoblots using an antibody that recognizes the heavy chain of sea urchin kinesin reveal that a 70 kDa protein present in wild-type and pf18 (central pairless) axonemes is absent in tcp1, suggesting the presence of an uncharacterized kinesin associated with the central pair apparatus. We demonstrate that the kinesin-like protein Klp1 is not attached to central pair microtubules in tcp1, but rather is located in, or is part of, a region we have termed the internal axonemal matrix. It is proposed that this matrix acts as a scaffold for axonemal proteins that may also be associated with the central pair apparatus. Correspondence: A. Koutoulis, Cell Biology Group, School of Plant Science, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.  相似文献   

16.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

17.
Tails of Tetrahymena   总被引:6,自引:0,他引:6  
SYNOPSIS. The source of force generation of beating cilia and flagella is an interaction between the doublet microtubules mediated by the dynein-1 arms which cause the doublets to slide relative to one another. Previously, we demonstrated direct sliding of Tetrahymena ciliary axonemes by dark field light microscopy. In this paper, the results of such an experiment have been captured on a polylysine-coated grid surface for whole-mount electron microscopy. Images in which sliding between doublets has taken place can be identified. We conclude that doublets slide relative to one another with a constant polarity. To produce the observed displacement, the direction of the dynein-1 arm force generation must be from base to tip, so that the doublet (n), to which the arms are attached, pushes the next doublet (n+ 1) toward the tip. In addition to the functional polarity, the dynein-1 arms are found to have a structural polarity: they tilt toward the base when viewed along the edges of the A-subfiber. A scheme is presented which reconciles the finding of a single polarity of active sliding with the geometry of microtubule tip displacement of bent cilia.  相似文献   

18.
《The Journal of cell biology》1984,98(6):2026-2034
Mutations at three independent loci in Chlamydomonas reinhardtii result in a striking alteration of cell motility. Mutant cells representing the three mbo loci move backwards only, propelled by a symmetrical "flagellar" type of bending pattern. The characteristic asymmetric "ciliary" type of flagellar bend pattern responsible for forward movement that predominates in wild-type cells is seldom seen in the mutants. This defect in motility was found to be a property of the mutant axonemes themselves: the isolated axonemes, reactivated by addition of ATP, showed exclusively the symmetrical wave form, and the protein composition of these axonemes differed from the wild-type composition. Axonemes obtained from mbo1 , mbo2 , and mbo3 cells were found to be deficient in six polypeptides regularly present in wild type. The mbo2 axonemes were deficient in two additional polypeptides. The polypeptides were identified in autoradiograms of two-dimensional SDS polyacrylamide gel electrophoretograms of 35S- or 32P-labeled axonemes. One of the six polypeptides has previously been identified; it is a component missing in a mutant deficient for inner dynein arms. Of the five axonemal polypeptides newly identified by the mbo mutants, four were shown to be present as phosphoproteins in wild-type axonemes. One of the additional polypeptides deficient in mbo2 axonemes was also shown to be phosphorylated in wild-type axonemes. Detailed ultrastructural analysis of the mbo1 flagella and the mbo1 , mbo2A , and mbo3 axonemes revealed that the mutants specifically lack the beak- like projections found within the B-tubules of outer doublets 5 and 6.  相似文献   

19.
Sperm tail axonemes from three insect species, representing the three apterygote orders Diplura, Archeognatha and Zygentoma, have been examined by high resolution electron microscopy. The samples were fixed in a mixture of glutaraldehyde and tannic acid followed by uranyl acetate post-fixation and the electron micrographs were subjected to computer analysis in order better to characterize the minute details of the axonemal microtubules. The dipluran Campodea was seen to have a row of accessory microtubules composed of 13 protofilaments, the archeognath Machilinus to have two rows of accessory microtubules composed of 16 protofilaments. and the zygentoman Lepismodes to have accessory microtubules in contact with the flagellar doublets and with a wall containing 16 protofilaments and an electron-dense lumen. The axonemal structure in Zygentoma is the one most similar to those of the pterygote insects. The protofilaments of the axonemal doublets were seen to have a somewhat widened interspace between some pairs of protofilaments and these ‘gaps’ coincided with the location of the basal parts of the outer dynein arm, the inner dynein arm, the spoke, and the intertubular material. It hence seems that these microtubule-associated structures influence the architecture of the microtubular wall.  相似文献   

20.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号