首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

The palm tribe Chamaedoreeae displays flowers arranged in a complex partial inflorescence called an acervulus. This type of partial inflorescence has so far not been reported elsewhere in the largest palm subfamily Arecoideae, which is traditionally characterized by flowers predominantly arranged in triads of one central female and two lateral male flowers. The ontogenetic basis of the acervulus is as yet unknown and its structural diversity throughout the genera of the Chamaedoreeae poorly recorded. This study aims to provide critical information on these aspects.

Methods

Developmental series and mature inflorescences were sampled from plants cultivated in international botanical gardens and wild populations. The main techniques employed included scanning electronic microscopy and serial anatomical sectioning of resin-embedded fragments of rachillae.

Key Results

Inflorescence ontogeny in Hyophorbe lagenicaulis demonstrates that the acervulus and the inflorescence rachilla form a condensed and cymose branching system resembling a coenosome. Syndesmy results from a combined process of rapid development and adnation, without or with reduced axis elongation. Acervulus diversity in the ten taxa of the Chamaedoreeae studied is displayed at the level of their positioning within the inflorescence, their arrangement, the number of floral buds and their sexual expression.

Conclusions

The results show that a more general definition of the type of partial inflorescence observed within the large subfamily Arecoideae would correspond to a cyme rather than to a floral triad. In spite of their common cymose architecture, the floral triad and the acervulus present differences with respect to the number and arrangement of floral buds, the superficial pattern of development and sexual expression.  相似文献   

2.

Background and Aims

Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.

Methods

Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.

Key Results

Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.

Conclusions

Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships.  相似文献   

3.

Background and Aims

Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution.

Methods

Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana.

Key Results

In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved.

Conclusions

We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.  相似文献   

4.
5.

Background and Aims

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy.

Methods

Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful.

Key Results

Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia.

Conclusions

The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.  相似文献   

6.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

7.

Background and Aims

Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty.

Methods

The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors.

Key Results

In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla.

Conclusions

It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.Key words: Delphinieae, development, evolution, evo-devo, nectar spurs, ontogenic spiral, Ranunculaceae, zygomorphy  相似文献   

8.
9.

Background and Aims

Although studies have shown that pollen addition and/or removal decreases floral longevity, less attention has been paid to the relationship between reproductive costs and floral longevity. In addition, the influence of reproductive costs on floral longevity responses to pollen addition and/or removal has not yet been evaluated. Here, the orchid Cohniella ascendens is used to answer the following questions. (a) Does experimental removal of flower buds in C. ascendens increase flower longevity? (b) Does pollen addition and/or removal decrease floral longevity, and does this response depend on plant reproductive resource status?

Methods

To study the effect of reproductive costs on floral longevity 21 plants were selected from which we removed 50 % of the developing flower buds on a marked inflorescence. Another 21 plants were not manipulated (controls). One month later, one of four flowers on each marked inflorescence received one of the following pollen manipulation treatments: control, pollinia removal, pollination without pollinia removal or pollination with pollinia removal. The response variable measured was the number of days each flower remained open (i.e. longevity).

Key Results

The results showed significant flower bud removal and pollen manipulation effects on floral longevity; the interaction between these two factors was not significant. Flowers on inflorescences with previously removed flower buds remained open significantly longer than flowers on control inflorescences. On the other hand, pollinated flowers closed much faster than control and removed-pollinia flowers, the latter not closing significantly faster than control flowers, although this result was marginal.

Conclusions

The results emphasize the strong relationship between floral longevity and pollination in orchids, as well as the influence of reproductive costs on the former.Key words: Cohniella ascendens, floral longevity, flower bud removal, pollination, pollinia removal, reproductive costs  相似文献   

10.

Background and Aims

The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow.

Methods

In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined.

Key Results

The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow.

Conclusions

The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube.  相似文献   

11.

Background and Aims

A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae).

Methods

Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual.

Key Results

The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing.

Conclusions

In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.  相似文献   

12.

Background and Aims

Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant''s pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest.

Methods

Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined.

Key Results

Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation.

Conclusions

The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant''s pollination success in the face of leaf herbivory stress.  相似文献   

13.
14.
Pouteau S  Albertini C 《Annals of botany》2011,107(6):1017-1027

Background and Aims

Reproductive phase change in Arabidopsis thaliana is characterized by two transitions in phytomer identity, the differentiation of the first elongate internode (bolting transition) and of the first flower (floral transition). An evaluation of the dynamics of these transitions was sought by examining the precision of the corresponding phytomer identity changes.

Methods

The length of the first elongate internode and the frequency of chimeric inflorescence structures, e.g. paraclades not subtended by a leaf (no-leaf/paraclades) and flowers subtended by a bract (bract/flowers), were measured in the Wassilewskija (Ws) accession and 47 early flowering mutants under a wide range of photoperiods. The impact of photoperiodic perturbations applied to Ws plants at different times of development was also evaluated.

Key Results

In Ws, both types of characters were remarkably constant across photoperiods in spite of a high degree of interindividual variability. Bract/flowers were not normally produced in Ws, but they were observed in conditions that suggest enhanced light signalling, e.g. in response to continuous light perturbations and in mutants with reduced hypocotyl elongation. In contrast, no-leaf/paraclades were normally present in approx. 20 % of Ws plants, and their frequency was increased in conditions that suggest reduced light signalling, e.g. in mutants with altered specification of long-day responses. The length of the first elongate internode was unrelated to the rate of stem elongation and to the regulation of reproductive phase change.

Conclusions

Bract/flowers and no-leaf/paraclades corresponded to opposite effects on the floral transition that reflected different dynamics of progression to flowering. In contrast, the length of the first elongate internode was only indirectly related to the regulation of reproductive phase change and was mainly dependent on global morphogenetic constraints. This paper proposes that morphogenetic variability could be used to identify critical phases of development and characterize the canalization of developmental patterns.  相似文献   

15.

Background and Aims

Heterostyly is a floral polymorphism characterized by the reciprocal position of stamens and stigmas in different flower morphs in a population. This reciprocal herkogamy is usually associated with an incompatibility system that prevents selfing and intra-morph fertilization, termed a heteromorphic incompatibility system. In different evolutionary models explaining heterostyly, it has been alternately argued that heteromorphic incompatibility either preceded or followed the evolution of reciprocal herkogamy. In some models, reciprocal herkogamy and incompatibility have been hypothesized to be linked together during the evolution of the heterostylous system.

Methods

We examine the incompatibility systems in species with different stylar polymorphisms from the genera Lithodora and Glandora (Boraginaceae). We then test whether evolution towards reciprocal herkogamy is associated with the acquisition of incompatibility. To this end, a phylogeny of these genera and related species is reconstructed and the morphological and reproductive changes that occurred during the course of evolution are assessed.

Key Results

Both self-compatibility and self-incompatibility are found within the studied genera, along with different degrees of intra-morph compatibility. We report for the first time extensive variability among members of the genus Glandora and related species in terms of the presence or absence of intraspecies polymorphism and heteromorphic incompatibility. Overall, our results do not support a tight link between floral polymorphism and incompatibility systems.

Conclusions

The independent evolution of stylar polymorphism and incompatibility appears to have occurred in this group of plants. This refutes the canonical view that there is strong linkage between these reproductive traits.  相似文献   

16.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

17.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

18.

Background and Aims

Delayed selfing is the predominant mode of autonomous self-pollination in flowering plants. However, few delayed selfing mechanisms have been documented. This research aims to explore a new delayed selfing mechanism induced by stigmatic fluid in Roscoea debilis, a small perennial ginger.

Methods

Floral biology and flower visitors were surveyed. The capacity of autonomous selfing was evaluated by pollinator exclusion. The timing of autonomous selfing was estimated by emasculation at different flowering stages. The number of seeds produced from insect-pollination was assessed by emasculation and exposure to pollinators in the natural population. The breeding system was also tested by pollination manipulations.

Key Results

Autonomous self-pollination occurred after flowers wilted. The stigmatic fluid formed a globule on the stigma on the third day of flowering. The enlarged globule seeped into the nearby pollen grains on the fourth flowering day, thus inducing pollen germination. Pollen tubes then elongated and penetrated the stigma. Hand-selfed flowers produced as many seeds as hand-crossed flowers. There was no significant difference in seed production between pollinator-excluded flowers and hand-selfed flowers. When emasculated flowers were exposed to pollinators, they produced significantly fewer seeds than intact flowers. Visits by effective pollinators were rare.

Conclusions

This study describes a new form of delayed autonomous self-pollination. As the predominant mechanism of sexual reproduction in R. debilis, delayed self-pollination ensures reproduction when pollinators are scarce.  相似文献   

19.
20.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号