首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The palm tribe Chamaedoreeae displays flowers arranged in a complex partial inflorescence called an acervulus. This type of partial inflorescence has so far not been reported elsewhere in the largest palm subfamily Arecoideae, which is traditionally characterized by flowers predominantly arranged in triads of one central female and two lateral male flowers. The ontogenetic basis of the acervulus is as yet unknown and its structural diversity throughout the genera of the Chamaedoreeae poorly recorded. This study aims to provide critical information on these aspects.

Methods

Developmental series and mature inflorescences were sampled from plants cultivated in international botanical gardens and wild populations. The main techniques employed included scanning electronic microscopy and serial anatomical sectioning of resin-embedded fragments of rachillae.

Key Results

Inflorescence ontogeny in Hyophorbe lagenicaulis demonstrates that the acervulus and the inflorescence rachilla form a condensed and cymose branching system resembling a coenosome. Syndesmy results from a combined process of rapid development and adnation, without or with reduced axis elongation. Acervulus diversity in the ten taxa of the Chamaedoreeae studied is displayed at the level of their positioning within the inflorescence, their arrangement, the number of floral buds and their sexual expression.

Conclusions

The results show that a more general definition of the type of partial inflorescence observed within the large subfamily Arecoideae would correspond to a cyme rather than to a floral triad. In spite of their common cymose architecture, the floral triad and the acervulus present differences with respect to the number and arrangement of floral buds, the superficial pattern of development and sexual expression.  相似文献   

2.

Background and Aims

The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research.

Methods

DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping.

Key Results and Conclusions

Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family.  相似文献   

3.
Palms are generally characterized by a large structure with a massive crown that creates difficulties in anatomical studies. The flowering behaviour of palm species may be a useful indicator of phylogenetic relationships and therefore evolutionary events. This paper presents a detailed histological study of reproductive development in coconut (Cocos nucifera L.), from initiation up to maturation of staminate and pistillate flowers. Reproductive development in coconut consists of a sequence of individual events that span more than two years. Floral morphogenesis is the longest event, taking about one year, while sex determination is a rapid process that occurs within one month. The inflorescence consists of different ultimate floral structural components. Pistillate flowers are borne in floral triads that are flanked by two functional staminate flowers. The staminate flowers are born in floral diads towards the base of the rachilla followed by solitary flowers in the middle to top of the rachilla. Three primary phases were identified in reproductive development, namely, transition of axillary bud into inflorescence bud, formation of floral buds, and sexualisation of individual flower buds. All developmental events with respect to stage or time of occurrence were determined.  相似文献   

4.
A comparative study of the floral structure in the species of the genus Rhapis (Arecaceae, Coryphoideae, Rhapidinae) is presented. Flowers are mainly unisexual, with three sepals, three petals, 6 stamens or staminodes and three carpels or carpellodes. Some evidences of basal congenital and apical postgenital fusion of the carpels, first time reported in the genus, were observed in the gynoecium. Ovules are basally attached and crassinucellate; they appear to be slightly anatropous. The morphology of the filaments suggests a division of the species into two groups: Rhapis excelsa and R. subtilis exhibit thick and keeled filaments, whereas R. gracilis, R. humilis, R. laosensis, R. micrantha and R. multifida have slender, non-keeled filaments. Relationships of Rhapis with the rest of the genera of Rhapidinae are inferred on the light of floral structure.  相似文献   

5.
Individuals of Phoenix dactylifera L. have expanded pistillodes or pseudocarpels in staminate flowers. These pseudocarpels are located in the centre of the male flowers and are surrounded by stamens. The gynoecium has the characteristic three carpellate arrangement commonly found in female date palm flowers. Pseudocarpels from male flower buds can expand into parthenocarpic fruit. Histology of the expanded pistillodes or pseudotarpels is similar to that of normal carpels from pistillate plants. These pseudocarpels lack ovules. Nutrient medium containing 10 mg 1-1 of 2,4-dichlorophenoxyacetic acid or p-chlorophenylacetic acid and 0.3% activated neutralized charcoal enhanced the development and outgrowth of the pseudocarpels of cultured male flowers.  相似文献   

6.
7.
We investigated spikelet development in four distantly related species of the grass tribe Andropogoneae to determine whether spikelet development and the formation of unisexual florets are uniform throughout the tribe. We studied development in Bothriochloa bladhii, Coelorachis aurita, Heteropogon contortus, and Hyparrhenia hirta, and compared these with Panicum, a member of the sister tribe Paniceae. Many aspects of spikelet development in the species we have studied correlate with what is already known for Tripsacum and maize (both Andropogoneae), despite variation in how unisexual florets are distributed on the plant. The formation of unisexual spikelets is also uniform. All florets initiate both pistil and stamen primordia. In florets destined to be male, cell death occurs in the subepidermal layers of the gynoecium after the formation of a gynoecial ridge. In florets destined to be female, there is no apparent cell death in the stamens, but growth ceases after anther formation. The similarity in spikelet development and the formation of unisexual florets point to a common genetic mechanism for sex determination throughout the Andropogoneae and possibly the entire Panicoideae. Use of a cell death pathway to cause gynoecial abortion may be the basis of one morphological character that defines the subfamily.  相似文献   

8.
Background and Aims Anaxagorea is the phylogenetically basalmost genus in the large tropical Annonaceae (custard apple family) of Magnoliales, but its floral structure is unknown in many respects. The aim of this study is to analyse evolutionarily interesting floral features in comparison with other genera of the Annonaceae and the sister family Eupomatiaceae. Methods Live flowers of Anaxagorea crassipetala were examined in the field with vital staining, liquid-fixed material was studied with scanning electron microscopy, and microtome section series were studied with light microscopy. In addition, herbarium material of two other Anaxagorea species was cursorily studied with the dissecting microscope. Key Results Floral phyllotaxis in Anaxagorea is regularly whorled (with complex whorls) as in all other Annonaceae with a low or medium number of floral organs studied so far (in those with numerous stamens and carpels, phyllotaxis becoming irregular in the androecium and gynoecium). The carpels are completely plicate as in almost all other Annonaceae. In these features Anaxagorea differs sharply from the sister family Eupomatiaceae, which has spiral floral phyllotaxis and ascidiate carpels. Flat stamens and the presence of inner staminodes differ from most other Annonaceae and may be plesiomorphic in Anaxagorea. However, the inner staminodes appear to be non-secretory in most Anaxagorea species, which differs from inner staminodes in other families of Magnoliales (Eupomatiaceae, Degeneriacae, Himantandraceae), which are secretory. Conclusions Floral phyllotaxis in Anaxagorea shows that there is no signature of a basal spiral pattern in Annonaceae and that complex whorls are an apomorphy not just for a part of the family but for the family in its entirety, and irregular phyllotaxis is derived. This and the presence of completely plicate carpels in Anaxagorea makes the family homogeneous and distinguishes it from the closest relatives in Magnoliales.  相似文献   

9.

Background and Aims

Balsaminaceae consist of two genera, the monospecific Hydrocera and its species-rich sister Impatiens. Although both genera are seemingly rather similar in overall appearance, they differ in ecology, distribution range, habitat preference and morphology. Because morphological support for the current molecular phylogenetic hypothesis of Impatiens is low, a developmental study is necessary in order to obtain better insights into the evolutionary history of the family. Therefore, the floral development of H. triflora and I. omeiana was investigated, representing the most early-diverged lineage of Impatiens, and the observations were compared with the literature.

Methods

Flowers at all developmental stages were examined using scanning electron microscopy and light microscopy.

Key results

In Hydrocera, two whorls of five free perianth primordia develop into a less zygomorphic perianth compared with its sister genus. The androecial cap originates from five individual stamen primordia. Post-genital fusion of the upper parts of the filaments result in a filament ring below the anthers. The anthers fuse forming connivent anther-like units. The gynoecium of Hydrocera is pentamerous; it is largely synascidiate in early development. Only then is a symplicate zone formed resulting in style and stigmas. In I. omeiana, the perianth is formed as in Hydrocera. Five individual stamen primordia develop into five stamens, of which the upper part of the filaments converge with each other. The gynoecium of I. omeiana is tetramerous; it appears annular in early development.

Conclusions

Comparison of the present results with developmental data from the literature confirms the perianth morphocline hypothesis in which a congenital fusion of the parts of the perianth results in a shift from pentasepalous to trisepalous flowers. In addition, the development of the androecial cap and the gynoecium follows several distinct ontogenetic sequences within the family.  相似文献   

10.
Background and Aims Date palms (Phoenix dactylifera, Arecaceae) are of great economic and ecological value to the oasis agriculture of arid and semi-arid areas. However, despite the availability of a large date palm germplasm spreading from the Atlantic shores to Southern Asia, improvement of the species is being hampered by a lack of information on global genetic diversity and population structure. In order to contribute to the varietal improvement of date palms and to provide new insights on the influence of geographic origins and human activity on the genetic structure of the date palm, this study analysed the diversity of the species.Methods Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 295 date palm accessions ranging from Mauritania to Pakistan using a set of 18 simple sequence repeat (SSR) markers and a plastid minisatellite.Key Results Using a Bayesian clustering approach, the date palm genotypes can be structured into two different gene pools: the first, termed the Eastern pool, consists of accessions from Asia and Djibouti, whilst the second, termed the Western pool, consists of accessions from Africa. These results confirm the existence of two ancient gene pools that have contributed to the current date palm diversity. The presence of admixed genotypes is also noted, which points at gene flows between eastern and western origins, mostly from east to west, following a human-mediated diffusion of the species.Conclusions This study assesses the distribution and level of genetic diversity of accessible date palm resources, provides new insights on the geographic origins and genetic history of the cultivated component of this species, and confirms the existence of at least two domestication origins. Furthermore, the strong genetic structure clearly established here is a prerequisite for any breeding programme exploiting the effective polymorphism related to each gene pool.  相似文献   

11.
Female floral structure is compared in Geonomeae (Arecaceae). A perianth is formed by two alternate whorls of three basally congenitally united and imbricate sepals and three basally congenitally united and apically valvate petals. A sterile androecium is formed by a variable number of staminodes, which are united into a tube. The gynoecium shows three more or less equally developed carpels or is pseudomonomerous (Geonoma). The single anatropous ovule per carpel is median, either basal or at mid-height of the ovary. A septal nectary is present at the base and mid-height of the ovaries and exits at different levels of the ovary. Carpels in pseudomonomerous gynoecia seem to be basistylous, but the styles are more lateral or apical in gynoecia with all three carpels equally developed. Stigmas expose unicellular or multicellular (Welfia) papillae at anthesis. Pollen tube transmitting tracts and a compitum are present in the ventral slits of the postgenitally united styles. Floral structure in Geonomeae is compared with other Arecaceae, especially Arecoideae, in a morphological and systematic context.  相似文献   

12.
Niu Y  Yang Y  Zhang ZQ  Li ZM  Sun H 《Annals of botany》2011,108(7):1257-1268

Background and aims

Pollination-induced floral changes, which have been widely documented in flowering plants, have been assumed to enhance the plant''s reproductive success. However, our understanding of the causes and consequences of these changes is still limited. Using an alpine gynodioecious species, Cyananthus delavayi, we investigated the factors affecting floral closure and estimated the fitness consequences of floral closure.

Methods

The timings of floral closure and fertilization were determined. The effects of pollen load, pollen type (cross- or self-pollen) and floral morph (female or perfect flower) on the occurrence of floral closure were examined. Ovule fertilization and seed production were examined to investigate the causes and consequences of floral closure. Flowers were manipulated to prevent closing to detect potential benefits for female fitness.

Key Results

Floral closure, which could be induced by a very low pollen load, occurred within 4–7 h after pollination, immediately following fertilization. The proportion of closed flowers was influenced by pollen load and floral morph, but not by pollen type. Floral closure was more likely to occur in flowers with a higher proportion of fertilized ovules, but there was no significant difference in seed production between closed and open flowers. Those flowers in which closure was induced by natural pollination had low fruit set and seed production. Additionally, seed production was not influenced by closing-prevented manipulation when sufficient pollen deposition was received.

Conclusions

The occurrence of floral closure may be determined by the proportion of fertilized ovules, but this response can be too sensitive to ensure sufficient pollen deposition and can, to some extent, lead to a cost in female fitness. These results implied that the control of floral receptivity by the recipient flowers does not lead to an optimal fitness gain in C. delavayi.  相似文献   

13.

Background and Aims

Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics.

Methods

New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated.

Key Results

The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics.

Conclusions

AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies.  相似文献   

14.
 Floral structure and development of representatives of Asteliaceae, Blandfordiaceae, Boryaceae, Doryanthaceae, and Hypoxidaceae, all members of the `lower' Asparagales, were studied comparatively. The results are discussed in the light of new molecular systematic studies, but also with regard to established morphological characters in related groups. Stamen shape varies considerably within and between taxa: the shape of anthers is from X-shaped, sagittate to non-sagittate, they are either latrorse or introrse, basifixed, centrifixed or dorsifixed. Gynoecia are syncarpous up to the stigmatic region in all taxa. Ovaries of Doryanthaceae and Hypoxidaceae are inferior, but they are superior in Asteliaceae, Blandfordiaceae and Boryaceae. All ovaries have at least a short synascidiate zone. With the exception of Astelia alpina (Asteliaceae), the ovaries are trilocular. Ovaries of Asteliaceae contain mucilage, which is secreted from trichomes on the funicle and on the placenta. Although flowers are polysymmetric at anthesis, they are monosymmetric in earliest stages with a developmental gradient from adaxial to abaxial. Perianth organs arise individually from either a concave (taxa with inferior ovary) or convex (taxa with superior ovary) apex. Hypoxidaceae have pollen flowers with free stamens. One species, Curculigo capitulata, has Solanum-type flowers with postgenitally united stamens. It is most probably pollinated by buzzing bees. All other taxa have nectariferous flowers with internal or external septal nectaries. Received February 5, 2001 Accepted June 20, 2001  相似文献   

15.
Electron microscopy of the gastrodermis of Gorgoderina attenuata demonstrates a syncytial epithelium. Underlying the gastrodermis is a basal lamina in which are embedded circular and longitudinal muscles. The luminal surface is extended as digitiform cytoplasmic extensions that apparently aid in the absorption of nutrients. The cytoplasm demonstrates an extensive system of rough endoplasmic reticulum, Golgi areas, and numerous mitochondria. Three types of membrane-delimited vesicles are noted. They are designated DV1, DV2, and DV3. DV1 vesicles and DV2 vesicles demonstrate acid phosphatase activity and are interpreted as lysosomes and cytolysomes, respectively. The basal plasmalemma is infolded at irregular intervals. No indication of endocytotic activity is noted.  相似文献   

16.
The subfamilyPhytelephantoideae comprises three genera (Ammandra, Aphandra, andPhytelephas) and seven species of dioecious palms. The floral scents ofAmmandra dasyneura, A. decasperma, Aphandra natalia, Phytelephas aequatorialis, P. macrocarpa, andP. seemannii were analyzed by gas chromatography-mass spectrometry. We studied the pollination biology ofA. natalia, P. aequatorialis, andP. macrocarpa, and tested how the synthetically produced main constituents of the floral scents ofAphandra andPhytelephas attracted insects in two natural populations ofPhytelephas. The genera are distinct in terms of floral scents.Ammandra has sesquiterpenes,Aphandra (+)-2-methoxy-3-sec-butylpyrazine, andPhytelephas p-methyl anisol. These constituents dominated the scents quantitatively and qualitatively. The similarity between scents of male and female inflorescences was 76.5% inAmmandra, 84.2% inAphandra, and >99% inPhytelephas. Different species ofAleocharinae (Staphylinidae) pollinateAphandra natalia andPhytelephas species and reproduce in their male inflorescences.Derelomini (Curculinoidae) andMystrops (Nitidulidae) only visit and pollinatePhytelephas in which male inflorescences they reproduce. A species ofBaridinae (Curculionidae) only visits and pollinatesAphandra natalia, and reproduces in its female inflorescence. The apparent reliance on one or a few floral scent constituents as attractants and few and specific pollinators may indicate co-evolution. Sympatric species ofPhytelephantoideae have different scents. We suggest that species with similar scents have allopatric distributions due to the absence of a pollinator isolation mechanism.  相似文献   

17.
Fruit specimens representing five taxa of the genusCyrtostachys were examined histologically in order to characterize the pericarp anatomy of the monogeneric subtribe Cyrtostachydinae (tribe Areceae, subfamily Arecoideae), as part of an ongoing survey of the family. The pericarp in this genus can be characterized by a combination of papillate epidermis, heavy layer of tanniniferous/pigmented cells below the epidermis, a system of vascular bundles with thick fibrous sheaths with purely fibrous bundles frequently above and below, absence of brachysclereids, and a very thin sclerified locular epidermis. On the basis of pericarp structure alone, the genus might be most closely related to theGronophyllum alliance of the subtribe Arecinae. This diverges somewhat from the hypothesis of relationship with theAreca group of the Arecinae resulting from two DNA-based phylogenetic studies, and even further from the hypothesis of relationship withIguanura suggested by another DNA-based phylogenetic study.  相似文献   

18.
Nicotiana attenuata HSPRO (NaHSPRO) is a negative regulator of seedling growth promoted by the fungus Piriformospora indica. Homologs of NaHSPRO in Arabidopsis thaliana (i.e., AtHSPRO1 and AtHSPRO2) are known to physically interact with the AKINβγ subunit of the SnRK1 complex.2 To investigate whether NaHSPRO is associated with SnRK1 function during the stimulation of seedling growth by P. indica, we studied N. attenuata plants silenced in the expression of NaGAL83 (as-gal83 plants)—a gene that encodes for the regulatory β-subunit of SnRK1—and plants silenced in the expression of both NaHSPRO and NaGAL83 (ir-hspro/as-gal83 plants). The results showed that P. indica differentially stimulated the growth of both as-gal83 and ir-hspro/as-gal83 seedlings compared with control seedlings, with a magnitude similar to that observed in ir-hspro seedlings. Thus, we showed that, similar to NaHSPRO, NaGAL83 is a negative regulator of seedling growth stimulated by P. indica. We propose that the effect of NaHSPRO on seedling growth is associated with SnRK1 signaling.  相似文献   

19.
The polysaccharide isolated from the gum exudate of palm Scheelea phalerata (SPN) was water-insoluble and composed of Fuc, Ara, Xyl, and uronic acid moieties in a 5:34:54:7 molar ratio: 12% of phenolics were also present. A soluble polysaccharide (SPNa) was obtained after alkaline treatment, which contained Fuc, Ara, Xyl and uronic acid in a 7:44:42:7 molar ratio, with only 2% phenolics. SPNa had an M(W) approximately 1.04 x 10(5) g mol(-1) and was almost monodisperse (M(W)/M(N) : 1.25 +/-0.22). It had a branched structure with side chains of 2-O-substituted Xylp (approximately 8%) and 3-O-substituted Araf (12%) units, and a large proportion of nonreducing end-units of Araf (15%), Fucp (10%), Xylp (4%), and Arap (6%). The (1 --> 4)-linked beta-Xylp main-chain units were 3-O- (9%), 2-O- (13%), and 2,3-di-O- (13%) substituted. Its (13)C NMR spectrum contained at least 9 C-1 signals, those at delta 108.6 and 107.7 arising from alpha-Araf units. Others were present at delta 175.4 from C-6 of alpha-GlcpA and delta 15.6 from C-6 of Fucp units. The main chain of SPNa was confirmed by analysis of a Smith-degraded polysaccharide (SPDS): methylation analysis provided a 2,3-Me(2)-Xyl (65%) derivative and its (13)C NMR spectrum showed five main signals typical of a (1 --> 4)-linked beta-Xylp units. Methylation analysis of a carboxy-reduced polysaccharide (SPN-CR) revealed a 2,3,4,6-Me(4)-Glc derivative (4%) arising from nonreducing end-units of GlcpA. Alpha-GlcpA-(1 --> 2)-alphabeta-Xy1p and alpha-GlcpA-(1 --> 2)-beta-Xylp-(1 --> 4)-alphabeta-Xylp were obtained via partial acid hydrolysis of SPN, showing the structure of side-chain substituents on O-2 of the main-chain units.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号