首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the branchial epithelium of stenohaline zebrafish Danio rerio, and in particular Na+–Cl cotransporter-like 2 (Slc12a10.2)-expressing ionocytes (Na+–Cl cotransporter [Ncc]-cells), which mediate the active uptake of ions from freshwater environments. The study assessed whether the pituitary hormone prolactin (Prl) stimulates the expression of messenger (m)RNAs encoding a Clc Cl channel family member (clcn2c) and a Na+–K+-ATPase α1 subunit (atp1a1a.2) expressed in Ncc-cells. Branchial clcn2c, but not atp1a1a.2 levels, were sensitive to Prl both in vitro and in vivo. These observations suggest that Prl contributes to maintaining systemic Cl balance via the regulation of clcn2c.  相似文献   

2.
It is concluded that Ca2+ transport across the basolateral membranes of the ionocytes in killifish skin is mediated for the major part by a Na+/Ca2+-exchange mechanism that is driven by the (transmembrane) Na+ gradient established by Na+/K+-ATPase. The conclusion is based, firstly, on the biochemical evidence for the presence of a Na+/Ca2+-exchanger next to the Ca2+-ATPase in the basolateral membranes of killifish gill cells. Secondly, the transcellular Ca2+ uptake measured in an Ussing chamber setup was 85% and 80% reduced in freshwater (FW) and SW (SW) opercular membranes, respectively, as the Na+ gradient across the basolateral membrane was directly or indirectly (by ouabain) reduced. Thapsigargin or dibutyryl-cAMP/IBMX in SW opercular membranes reduced Ca2+ influx to 46%, comparable to the effects seen in FW membranes [reduction to 56%; Marshall et al. 1995a]. Basal Ca2+ influx across the opercular membrane was 48% lower in membranes from fish adapted to SW than in membranes from fish adaptated to FW. Branchial Na+/K+-ATPase activity was two times higher in SW adapted fish. Accepted: 29 October 1996  相似文献   

3.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl cotransporter (NKCC) is an important membrane protein that maintains the internal Cl concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.  相似文献   

4.
Atlantic salmon Salmo salar smolts were exposed to one of the four different aerobic exercise regimens for 10 weeks followed by a 1 week final smoltification period in fresh water and a subsequent eight‐day seawater transfer period. Samples of gill and intestinal tissue were taken at each time point and gene expression was used to assess the effects of exercise training on both branchial and intestinal osmoregulatory pathways. Real‐time polymerase chain reaction (PCR) analysis revealed that exercise training up‐regulated the expression of seawater relevant genes in the gills of S. salar smolts, including Na+, K+ ATPase (nka) subunit α1b, the Na+, K+, 2 Cl? co‐transporter (nkcc1) and cftr channel. These findings suggest that aerobic exercise stimulates expression of seawater ion transport pathways that may act to shift the seawater transfer window for S. salar smolts. Aerobic exercise also appeared to stimulate freshwater ion uptake mechanisms probably associated with an osmorespiratory compromise related to increased exercise. No differences were observed in plasma Na+ and Cl? concentrations as a consequence of exercise treatment, but plasma Na+ was lower during the final smoltification period in all treatments. No effects of exercise were observed for intestinal nkcc2, nor the Mg2+ transporters slc41a2 and transient receptor protein M7 (trpm7); however, expression of both Mg2+ transporters was affected by salinity transfer suggesting a dynamic role in Mg2+ homeostasis in fishes.  相似文献   

5.
The ion regulation mechanisms of fishes have been recently studied in zebrafish (Danio rerio), a stenohaline species. However, recent advances using this organism are not necessarily applicable to euryhaline fishes. The euryhaline species medaka (Oryzias latipes), which, like zebrafish, is genetically well categorized and amenable to molecular manipulation, was proposed as an alternative model for studying osmoregulation during acclimation to different salinities. To establish its suitability as an alternative, the present study was conducted to (1) identify different types of ionocytes in the embryonic skin and (2) analyze gene expressions of the transporters during seawater acclimation. Double/triple in situ hybridization and/or immunocytochemistry revealed that freshwater (FW) medaka contain three types of ionocyte: (1) Na+/H+ exchanger 3 (NHE3) cells with apical NHE3 and basolateral Na+-K+-2Cl? cotransporter (NKCC), Na+-K+-ATPase (NKA) and anion exchanger (AE); (2) Na+-Cl? cotransporter (NCC) cells with apical NCC and basolateral H+-ATPase; and (3) epithelial Ca2+ channel (ECaC) cells [presumed accessory (AC) cells] with apical ECaC. On the other hand, seawater (SW) medaka has a single predominant ionocyte type, which possesses apical cystic fibrosis transmembrane conductance regulator (CFTR) and NHE3 and basolateral NKCC and NKA and is accompanied by smaller AC cells that express lower levels of basolateral NKA. Reciprocal gene expressions of decreased NHE3, AE, NCC and ECaC and increased CFTR and NKCC in medaka gills during SW were revealed by quantative PCR analysis.  相似文献   

6.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

7.
On the basis of kinetic characteristics of the ion exchange between freshwater aquatic organisms and external medium, the existing concepts on the action mechanisms of the ion carriers located in cell membranes of skin ionocytes of embryos and in the gill epithelium of fishes are analyzed. It is shown that the main mechanism compensating for the Na+ loss by the organism of freshwater hydrobionts into the external environment is the Na+-Cl cotransporter and, to a certain degree, the Na+-K+-2Cl cotransporter. A supplementary role in the Na+ transport from the water under extreme conditions may play the Na+/H+ and Na+/NH4 + exchangers.  相似文献   

8.
Fundulus heteroclitus (killifish) is a model organism for ionoregulatory studies, particularly because of its opercular epithelium, although the gills are the major sites of ion exchange. Whereas Na+ and Cl are excreted through the gills in seawater (SW), the killifish is unusual in taking up only Na+ and not Cl at the gills in freshwater (FW). We describe morphological changes in the branchial epithelium following transfer from an acclimation medium of 10% SW to 100% SW or FW. In 10% SW, mitochondria-rich cells resemble typical seawater chloride cells (SWCCs) with accessory cells. After transfer to 100% SW, no change occurs in pavement cell (PVC) morphology or mitotic rate (measured by bromo-deoxyuridine technique), although the density of SWCC apertures increases several fold because of the uncovering of buried SWCCs by PVCs, in accord with increased rates of Na+ and Cl efflux. After transfer to FW, PVC morphology remains unchanged, but SWCCs and accessory cells are quickly covered by PVCs, with many undergoing apoptosis or necrosis. The mitotic rate doubles by 10–14 h but typical freshwater chloride cells (FWCCs) do not appear. Instead, a wedge-shaped cell type that is moderately rich in apically oriented mitochondria, with a large ovoid nucleus, thin cytoplasmic layer, paucity of vesicular-tubular network, and variably villous surface rapidly (by 3 h) and progressively appears in the filament epithelium, by both uncovering and mitosis. This cell type is similar to that recently identified as the site of Na+ uptake in the FW trout gill. We propose the new term “cuboidal cell” for this cell, based on its morphology, to avoid confusion with traditional terminology (of PVC). We hypothesize that the cuboidal cells are the sites of active Na+ uptake in FW F. heteroclitus and suggest that the lack of Cl uptake is attributable to the absence of typical FWCCs previously described in teleosts.This work was supported by NSERC Discovery grants (to C.M.W.) and by an NSERC International Fellowship (to P.L.). C.M.W. is supported by the Canada Research Chair Program.  相似文献   

9.
The tilapia (Oreochromis mossambicus) is a euryhaline fish exhibiting adaptive changes in cell size, phenotype, and ionoregulatory functions upon salinity challenge. Na+/Cl? cotransporter (NCC) and Na+/K+/2Cl? cotransporter (NKCC) are localized in the apical and basolateral membranes of mitochondria‐rich (MR) cells of the gills. These cells are responsible for chloride absorption (NCC) and secretion (NKCC), respectively, thus, the switch of gill NCC and NKCC expression is a crucial regulatory mechanism for salinity adaptation in tilapia. However, little is known about the interaction of cytoskeleton and these adaptive changes. In this study, we examined the time‐course of changes in the localization of NKCC/NCC in the gills of tilapia transferred from fresh water (FW) to brackish water (20‰) and from seawater (SW; 35‰) to FW. The results showed that basolateral NKCC disappeared and NCC was expressed in the apical membrane of MR cells. To further clarify the process of these adaptive changes, colchicine, a specific inhibitor of microtubule‐dependent cellular regulating processes was used. SW‐acclimated tilapia were transferred to SW, FW, and FW with colchicine (colchicine‐FW) for 96 h. Compared with the FW‐treatment group, in the MR cells of colchicine‐FW‐treatment group, (1) the average size was significantly larger, (2) only wavy‐convex‐subtype apical surfaces were found, and (3) the basolateral (cytoplasmic) NKCC signals were still exhibited. Taken together, our results suggest that changes in size, phenotype, as well as the expression of NCC and NKCC cotransporters of MR cells in the tilapia are microtubule‐dependent. J. Morphol. 277:1113–1122, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Salinity tolerance in wild (Glendale) and hatchery (Quinsam) pink salmon Oncorhynchus gorbuscha (average mass 0·2 g) was assessed by measuring whole body [Na+] and [Cl?] after 24 or 72 h exposures to fresh water (FW) and 33, 66 or 100% sea water (SW). Gill Na+, K+‐ATPase activity was measured following exposure to FW and 100% SW and increased significantly in both populations after a 24 h exposure to 100% SW. Whole body [Na+] and whole body [Cl?] increased significantly in both populations after 24 h in 33, 66 and 100% SW, where whole body [Cl?] differed significantly between Quinsam and Glendale populations. Extending the seawater exposure to 72 h resulted in no further increases in whole body [Na+] and whole body [Cl?] at any salinity, but there was more variability among the responses of the two populations. Per cent whole body water (c. 81%) was maintained in all groups of fish regardless of salinity exposure or population, indicating that the increase in whole body ion levels may have been related to maintaining water balance as no mortality was observed in this study. Thus, both wild and hatchery juvenile O. gorbuscha tolerated abrupt salinity changes, which triggered an increase in gill Na+, K+‐ATPase within 24 h. These results are discussed in terms of the preparedness of emerging O. gorbuscha for the marine phase of their life cycle.  相似文献   

11.
Transepithelial potentials (TEP) were measured in killifish, acclimated to freshwater (FW), seawater (SW), 33% SW or cycling salinities relevant to tidal cycles in an estuary, and subsequently subjected to salinity changes in progressive or random order. Random compared to progressive salinity changes in an upward or downward direction in FW- and SW-acclimated fish, respectively, did not greatly influence responses to salinity change. Fish acclimated to SW or 33% SW as well as those acclimated to cycling salinities behaved similarly (TEP more positive than +15 mV in 100% SW, decreasing to ~0 mV at 20–40% SW, and more negative than −30 mV in FW). In contrast, FW-acclimated fish displayed a less pronounced TEP response to salinity (0 mV in FW through 20% SW, increasing thereafter to values more positive than +10 mV at 100% SW). We conclude that when evaluated under estuarine tidal conditions, the killifish gill exhibits adaptive electrical characteristics, opposing Na+ loss at low salinity and favouring Na+ extrusion at high salinity, changes explained at least in part by the Cl to Na+ permeability ratio. Thus animals living in the estuaries can move to lower and higher salinities for short periods with little physiological disturbance, but this ability is lost after acclimation to FW.  相似文献   

12.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

13.
The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na+ and Cl in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in part related to its ability to up-regulate key ion transporters in the posterior intestine. The findings pave the way for future iono-regulatory studies on the Mozambique tilapia esophageal-gastrointestinal tract.  相似文献   

14.
《FEBS letters》1997,400(2-3):191-195
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl cotransporter component of the Cl influx from the total unidirectional Cl influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl influx whereas the other D2-type receptors acted on the Na+/K+/2Cl cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.  相似文献   

15.
Summary A comparative study of the mechanisms of Na+ absorption through brush border membranes of enterocytes from freshwater (FW) and seawater (SW) adapted trout were carried out using purified vesicle preparations. In contrast to FW trout, SW trout were found to possess a Na+–K+–Cl cotransport process. This finding is regarded as a major adaptation to SW since this cotransport allows an increase of ions and water absorption. Both FW and SW trout were equipped with a Na+–H+ exchange. In FW, the intestine of the trout had both a Na+–Na+ exchange and a Na+ conductance which may be responsible for enterocyte Na+ uptake along the potential gradient.  相似文献   

16.
Plasma and erythrocyte solute properties were examined in freshwater (FW) acclimated juvenile Carcharhinus leucas following acute transfer to 75% seawater (SW), and 100% SW. Blood samples were taken at 0, 12 and 96 h following transfer to 75% SW and 24 and 72 h after transfer to 100% SW. A control group in FW was subjected to the same sampling regime. Upon transfer of C. leucas to 75% and 100% SW, plasma Na+, Cl, K+, Mg2+, Ca2+, urea and TMAO concentrations all increased significantly but disproportionately. Plasma Na+ and Cl increased immediately, followed by an increase in plasma urea. Erythrocyte urea and TMAO concentrations increased significantly following transfer to 75% and 100% SW; however, changes in erythrocyte inorganic ion concentrations were insignificant. Haematocrit, haemoglobin and mean cell haematocrit did not differ significantly after transfer to seawater; however, plasma water was slightly reduced after 24 and 72 h in 100% SW. Red blood cell (RBC) water content was elevated 24 h after transfer to 100% SW but returned to FW levels after 72 h. These results demonstrate that the transfer from 75% to 100% SW presents C. leucas with a greater osmoregulatory challenge than transfer from FW to 75% SW, despite the larger concentration gradient in the latter. In summary, C. leucas tolerate rapid and significant increases in salinity by rapidly increasing plasma osmolality to be hyperosmotic to the environment whilst maintaining a tight regulation of their intracellular fluid environment.  相似文献   

17.
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6 h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl? cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl? cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6 h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6 h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.  相似文献   

18.
The development of an ion regulatory mechanism for body fluid homeostasis was an important trait for vertebrates during the evolution from aquatic to terrestrial life. The homeostatic mechanism of Cl- in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Unlike in mammals, in which the kidney plays a central role, in most fish species, the gill is responsible for the maintenance of Cl- homeostasis via Cl- transport uptake mechanisms. Previous studies in zebrafish identified Na+-Cl- cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl- uptake, similar to distal convoluted tubular cells in mammalian kidney. However, the mechanism by which basolateral ions exit from NCC cells is still unclear.Of the in situ hybridization signals of twelve members of the clc Cl- channel family, only that of clc-2c exhibited an ionocyte pattern in the gill and embryonic skin. Double in situ hybridization/immunocytochemistry confirmed colocalization of apical NCC2b with basolateral CLC-2c. Acclimation to a low Cl- environment increased mRNA expression of both clc-2c and ncc2b, and also the protein expression of CLC-2c in embryos and adult gills. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl- content in zebrafish embryos, a phenotype similar to that of ncc2b mutants; this finding suggests a role for CLC-2c in Cl- uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl- homeostasis. Further comparative genomic and phylogenetic analyses revealed that zebrafish CLC-2c is a fish-specific isoform that diverged from a kidney-predominant homologue, in the same manner as NCC2b and its counterparts (NCCs).Several lines of molecular and cellular physiological evidences demonstrated the cofunctional role of apical NCC2b and basolateral CLC-2c in the gill/skin Cl- uptake pathway. Taking the phylogenetic evidence into consideration, fish-specific NCC2b and CLC-2c may have coevolved to perform extra-renal Cl- uptake during the evolution of vertebrates in an aquatic environment.  相似文献   

19.
The salinity tolerance, and hydromineral regulation capabilities of three size groups (small 110–170 g; medium 230–290 g, large 460–700 g; n=48 for each group) of 13-month-old juvenile Gulf of Mexico sturgeon were investigated. Fish (n=6 for each salinity) were transferred directly from freshwater (FW) to a series of experimental salinity treatments (0, 5, 10, 15, 20, 25, 30, and 35 parts per thousand (ppt)). Fish were also acclimated in brackish water (20 ppt) for 2 weeks and transferred to a salinity of 34 ppt. In this condition juvenile Gulf of Mexico sturgeon adapted to saltwater (SW) and maintained their hydromineral balance. FW adapted sturgeon (n=6) had an average blood hemotocrit of 28.2±0.8%, plasma osmolality of 260.7±1.6 mOsm kg−1 H2O, and plasma ion concentrations of 135.7±1.2 mM l−1 Na+, 106.9±1.9 mEq l−1 Cl, and 2.9±0.1 mM l−1 K+. In SW adapted sturgeon (n=8) blood parameters averaged 26.9±0.7% for hematocrit, 294.2±2.3 mOsm kg−1 H2O for osmolality, 152.0±1.7 mM l−1 Na+, 149.2±1.4 mEq l−1 for Cl, and 3.1±0.1 mM l−1 K+. The method of transfer (abrupt or slow acclimation) directly affected fish survival and the time they took to achieve ionic and osmotic regulation. This SW adaptation appears to be related to body size, the larger the fish the easier the adaptation process. A threshold size of about 170 g was apparent for the fish to adapt to saltwater after 2 weeks of acclimation. Chloride cells were present in both FW and SW adapted sturgeon with SW and brackish water fish having chloride cells significantly (P<0.05) more numerous (561±53 and 598±45 cells mm−2) and larger in size (41.0±3.85 and 34.2±4.49 μm2) than FW adapted sturgeon (10±1.0 cells mm−2 and 22±2.53 μm2). Few chloride cells were observed in the opercular membrane, however, none were found in the pseudobranch and spiracle.  相似文献   

20.
Because the ghrelinergic system in teleost fishes is broadly expressed in organs that regulate appetite as well as those that contribute to the regulation of salt and water balance, we hypothesized that manipulating salt and water balance in goldfish (Carassius auratus) would modulate the ghrelinergic system. Goldfish were acclimated to either freshwater (FW) or ion-poor FW (IPW) and were fed either a control diet containing 1% NaCl or low-salt diet containing 0.1% NaCl. Endpoints of salt and water balance, i.e., serum Na+ and Cl levels, muscle moisture content and organ-specific Na+-K+-ATPase (NKA) activity, were examined in conjunction with brain, gill and gut mRNA abundance of preproghrelin and its receptor, growth hormone secretagogue receptor (ghs-r). Acclimation of fish to IPW reduced serum osmolality and Cl levels and elevated kidney NKA activity, while FW fish fed a low NaCl diet exhibited a modest reduction in muscle moisture content but otherwise no apparent osmoregulatory disturbance. In contrast, a combined treatment of IPW acclimation and low dietary NaCl content reduced serum osmolality and Cl levels, elevated muscle moisture content and increased gill, kidney and intestinal NKA activity. This intensified response to the combined effects of water and dietary ion deprivation is consistent with an increased effort to enhance ion acquisition. In association with these latter observations, a significant upregulation of preproghrelin mRNA expression in brain and gut was observed. A significant increase in ghs-r mRNAs was also observed in the gill of goldfish acclimated to IPW alone but a reduction in dietary NaCl content did not impact the ghrelinergic system of goldfish in FW. The results support the hypothesis that the ghrelinergic system is modulated in response to manipulated salt and water balance. Whether the central and peripheral ghrelinergic system contributes to ionic homeostasis in goldfish currently remains unclear and warrants further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号