首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The major characteristics of pancreatic cancer are its excessive local invasion and early systemic dissemination. The glucose-regulated protein is over-expressed in many human cancers including pancreatic cancer and correlated with invasion and metastasis in many cancers. To investigate the effect of Grp78 on the invasion of pancreatic cancer, we used western blot and Transwell assay. We found Grp78 is expressed at lower levels in capan-2 and higher expressed in MiaPaCa-2 cells, and Grp78 expression levels were correlated with the invasion potentials of tumor cells. Then,we increased the expression of Grp78 in capan-2 cells and decreased the expression of Grp78 in MiaPaCa-2 cells. We found that over-expression of Grp78 caused significant increase in the expression of TIMP-1, TIMP-2, MMP-14, MMP-2, and MMP-9 in Capan-2 cells. Consistently, knockdown of Grp78 decreased the expression of them in MiaPaCa-2 cells. Gelatin zymography showed Grp78 over-expression stimulated the activities of MMP-2 and MMP-9, while GRP78 knockdown reduced the activities of MMP-2 and MMP-9. Cytoskeleton staining showed that knockdown of Grp78 caused a marked increase in cytoskeleton F-actin stress fibers in MiaPaCa-2 cells. Consistently, GRP78 knockdown hyperactivated RhoA and inhibited significantly Rac activity. Grp78 over-expression decreases the RhoA and stimulated Rac activity. We also found that Grp78 modulated FAK and JNK signaling pathways. Over-expression of GRP78 in Capan-2 activated FAK and JNK. Finally, we demonstrated that knockdown of FAK by shRNA in combination with blockade of JNK signaling pathway with SP600125 completely inhibited GRP78-induced cancer cell invasion. GRP78 is involved in the regulation of pancreatic cancer invasion. FAK and JNK are the key downstream effectors of GRP78.  相似文献   

4.
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.  相似文献   

5.
Matrix metalloproteinase-9 (MMP-9) produced by tumor cells is known to be implicated in the invasion of squamous cell carcinoma (SCC). In the process of searching for agents to inhibit MMP-9 in cancer, immunosuppressive factors, dexamethasone (DEX) and interleukin-4 (IL-4) were found to inhibit protein production as well as gene expression of MMP-9 in tumor necrosis factor alpha (TNFalpha)-stimulated SCC cells. DEX and IL-4 could also suppress the expression of urokinase type plasminogen activator (uPA) to prevent the conversion from the proenzyme form of MMP-9 to its active form. Regarding their mechanisms to inhibit the expression of MMP-9 and uPA, DEX and IL-4 had no effect on the cell surface levels of TNFalpha receptors, but inhibited the activation of NF-kappaB and NF-kappaB-dependent gene expression. DEX, but not IL-4, could strongly augment the TNFalpha-induced expression of IkappaBalpha in SCC cells. These results suggest that DEX and IL-4 suppress not only immunological reactions, but also tumor invasion by targeting NF-kappaB.  相似文献   

6.
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells.  相似文献   

7.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) act as morphogens when expressed in colorectal cancer (CRC), promoting the assumption of a better differentiated phenotype by regulating cell motility in the context of remodeling and retarding tumor cell metastasis by enhancing cell-matrix attachment. Although we have shown that these processes are mediated by focal adhesion kinase (FAK), the downstream target(s) of GRP-induced FAK activation are not known. Since osteoblast differentiation is mediated by FAK-initiated upregulation of ICAM-1 (Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y. J Biol Chem 278: 45368-45374, 2003), we determined whether GRP-induced activation of FAK alters ICAM-1 expression in CRC and, if so, determined the contribution of ICAM-1 to mediating GRP's morphogenic properties. Caco-2 and HT-29 cells variably express GRP/GRPR. These cells only express ICAM-1 when GRPR are present. In human CRC, GRPR and ICAM-1 are only expressed by better differentiated tumor cells, with ICAM-1 located at the basolateral membrane. ICAM-1 expression was only observed subsequent to GRPR signaling via FAK. To study the effect of ICAM-1 expression on tumor cell motility, CRC cells expressing GRP, GRPR, and ICAM-1 were cultured in the presence and absence of GRPR antagonist or monoclonal antibody to ICAM-1. CRC cells engaged in directed motility in the context of remodeling and were highly adherent to the extracellular matrix, only in the absence of antagonist or ICAM-1 antibody. These data indicate that GRP upregulation of ICAM-1 via FAK promotes tumor cell motility and attachment to the extracellular matrix.  相似文献   

8.
Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at the cell surface are just emerging. In this report, we combined biochemical, imaging and mutational approaches to address these issues. For detection of sGRP78, we utilized a mouse monoclonal antibody highly potent and specific for GRP78 or epitope-tagged GRP78, coupled with imaging and biochemical techniques that allowed detection of sGRP78 but not intracellular GRP78. Our studies revealed that breast and prostate cancer cells resistant to hormonal therapy actively promote GRP78 to the cell surface, which can be further elevated by a variety of ER stress-inducing conditions. We showed that sGRP78 forms complex with PI3K, and overexpression of sGRP78 promotes PIP3 formation, indicative of PI3K activation. We further discovered that an insertion mutant of GRP78 at its N-terminus domain, while retaining stable expression and the ability to translocate to the cell surface as the wild-type protein, exhibited reduced complex formation with p85 and production of PIP3. Thus, our studies provide a mechanistic explanation for the regulation of the PI3K/AKT signaling by sGRP78. Our findings suggest that targeting sGRP78 may suppress therapeutic resistance in cancer cells and offer a novel strategy to suppress PI3K activity.  相似文献   

9.
Gastrin-releasing peptide (GRP) is typically viewed as a growth factor in cancer. However, we have suggested that in colon cancer, GRP acts primarily as a morphogen when it and its receptor (GRP-R) are aberrantly upregulated. As such, GRP/GRP-R act(s) primarily to modulate processes contributing to the assumption or maintenance of tumor differentiation. One of the most important such processes is the ability of tumor cells to achieve directed motility in the context of tissue remodeling. Yet the cellular conditions affecting GRP/GRP-R expression, and the biochemical pathways involved in mediating its morphogenic properties, remain to be established. To study this, we evaluated the human colon cancer cell lines Caco-2 and HT-29 cells. We found that confluent cells do not express GRP/GRP-R. In contrast, disaggreation and plating at subconfluent densities results in rapid GRP/GRP-R upregulation followed by their progressive decrease as confluence is achieved. GRP/GRP-R coexpression correlated with that of focal adhesion kinase (FAK) phosphorylation of Tyr(397), Tyr(407), Tyr(861), and Tyr(925) but not Tyr(576) or Tyr(577). To more specifically evaluate the kinetics of GRP/GRP-R upregulation, we wounded confluent cell monolayers. At t = 0 h GRP/GRP-R were not expressed, yet cells immediately began migrating into the gap created by the wound. GRP/GRP-R were first detected at approximately 2 h, and maximal levels were observed at approximately 6 h postwounding. The GRP-specific antagonist [d-Phe(6)]-labeled bombesin methyl ester had no effect on cell motility before GRP-R expression. In contrast, this agent increasingly attenuated cell motility with increasing GRP-R expression such that from t = 6 h onward no further cell migration into the gap was observed. Overall, these findings indicate the existence of GRP-independent and -dependent phases of tumor cell remodeling with the latter mediating colon cancer cell motility during remodeling via FAK.  相似文献   

10.
The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy-3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-κB activation in TPA-treated MCF-7 cells. However, BVT948 didn’t block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9. [BMB Reports 2013; 46(11): 533-538]  相似文献   

11.
There is increased staining of endothelins (ET-1, -2, and -3) and receptors (ET-RA and -RB) in invasive breast tumors compared to nonneoplastic tissue, and ETs stimulate MCF-7 cell invasion in vitro. We analyzed ETstimulation of benign and transformed mammary epithelial cells, and whether expression of ETs is sufficient to induce invasiveness. In breast cancer patient serum, ET-1 was increased in those patients with lymph node metastases compared to those with no lymph node involvement; ETs, however, had no mitogenic effect on breast tumor cell lines in vitro. The benign mammary epithelial cell line, hTERT-HME1, and the poorly invasive breast tumor cell line MCF-7 secreted low levels of ET-1, while the invasive cell lines SKBR3 and MDAMB231 secreted high levels. Expression of the ETs and receptors by the cell lines broadly correlated with their in vitro invasiveness; overexpression of ETs in MCF-7 cells increased basal invasion. ET-mediated invasion involved both receptors and a calcium influx to induce a pertussis toxin-sensitive MAPK pathway. MMP-14 activity was induced via ET-RA in an autocrine manner. In contrast to transformed cells, ET stimulation or overexpression did not induce an invasive phenotype in benign cells. Benign cells do not respond to ETs, and ET expression is not sufficient to induce invasion; however, the level of ET production by tumor cells correlates with their invasiveness, and increasing expression of the ET axis promotes breast tumor cell invasion via both receptors, while MMP-14 is induced via ET-RA.  相似文献   

12.
13.
14.
15.
G protein-coupled estrogen receptor (GPER) was identified as a new member of the estrogen receptor family in recent years. It has become apparent that GPER mediates the non-genomic signaling of 17β-estradiol (E2) in a variety of estrogen-related cancers. Our previous study has found that GPER was overexpressed in human epithelial ovarian cancer and was positively correlated with the expression of matrix metalloproteinase 9 (MMP-9), which suggested GPER might promote the metastasis of ovarian cancer. However, the mechanisms underlying GPER-dependent metastasis of ovarian cancer are still not clear. In the present study, estrogen receptor α (ERα)-negative/GPER-positive OVCAR5 ovarian cancer cell line was used to investigate the role of GPER in the migration and invasion of ovarian cancer. Wound healing assay and transwell matrigel invasion assay were performed to determine the potentials of cell migration and invasion, respectively. The production and activity of MMP-9 in OVCAR5 cells were examined by Western blot and gelatin zymography analysis. The results showed that E2 and selective GPER agonist G-1 increased cell motility and invasiveness, and upregulated the production and proteolytic activity of MMP-9 in OVCAR5 cells. Small interfering RNA (siRNA) targeting GPER and G protein inhibitor pertussin toxin (PTX) inhibited the migration and invasion of OVCAR5 cells, and also reduced the expression and activity of MMP-9. Our data suggested that GPER promoted the migration and invasion of ovarian cancer cells by increasing the expression and activity of MMP-9. GPER might play an important role in the progression of ovarian cancer.  相似文献   

16.
H Kobayashi 《Human cell》2001,14(3):233-236
Bikunin (bik, also known as urinary trypsin inhibitor [UTI]), a Kunitz-type protease inhibitor, interacts with cells as a negative modulator of the invasive cells. Human ovarian cancer cell line, HRA, was treated with phorbol ester (PMA) in order to evaluate the effect on expression of urokinase-type plasminogen activator (uPA). Preincubation of the cells with bik reduced the ability of PMA to trigger the uPA expression at the gene level and at the protein level. We next asked whether the mechanism of inhibition of uPA expression by bik is due to interference with MAP kinase, since PMA could also activate a signaling pathway involving MEK/ERK/c-Jun-dependent uPA expression. When cells were preincubated with bik, we could detect suppression of phosphorylation of these proteins, demonstrating that bik markedly suppresses the cell motility possibly through negative regulation of MEK/ERK/c-Jun-dependent mechanisms, and that these changes in behavior are correlated with a coordinated down-regulation of uPA which is likely to contribute to the cell invasion processes. To clarify the role of bik on tumor metastasis, HRA cells were transfected with an expression vector harboring a cDNA encoding for human bik. Transfection of HRA with the bik cDNA resulted in five variants stably expressing functional bik and significantly reduced invasion, but not proliferation, adhesion, or migration relative to the parental cells. Animals with bik* transfectants induced reduced peritoneal dissemination and long term survival. These results suggest that transfection with the bik gene induces the suppression of tumor cell invasion and peritoneal dissemination, and can prolong survival. This pre-clinical animal model offers the possibility to explore gene therapy as a new treatment modality for ovarian cancer.  相似文献   

17.
18.
3,3′‐Diindolylmethane (DIM) has been studied for its putative anti‐cancer properties, especially against prostate cancer; however, its exact mechanism of action remains unclear. We recently provided preliminary data suggesting down‐regulation of uPA during B‐DIM (a clinically active DIM)‐induced inhibition of invasion and angiogenesis in prostate cancer cells. Since the expression and activation of uPA plays important role in tumorigenicity, and high endogenous levels of uPA and uPAR are found in advanced metastatic cancers, we investigated their role in B‐DIM‐mediated inhibition of prostate cancer cell growth and motility. Using PC3 cells, we found that B‐DIM treatment as well as the silencing of uPA and uPAR by siRNAs led to the inhibition of cell growth and motility. Conversely, over‐expression of uPA/uPAR in LNCaP and C4‐2B cells resulted in increased cell growth and motility, which was effectively inhibited by B‐DIM. Moreover, we found that uPA as well as uPAR induced the production of VEGF and MMP‐9, and that the down‐regulation of uPA/uPAR by siRNAs or B‐DIM treatment resulted in the inhibition of VEGF and MMP‐9 secretion which could be responsible for the observed inhibition of cell migration. Interestingly, silencing of uPA/uPAR led to decreased sensitivity to B‐DIM indicating important role of uPA/uPAR in B‐DIM‐mediated regulation of prostate cancer cell growth and migration. Our data suggest that chemopreventive and/or therapeutic activity of B‐DIM is in part due to down‐regulation of uPA–uPAR leading to reduced production of VEGF/MMP‐9 which ultimately leads to the inhibition of cell growth and migration of aggressive prostate cancer cells. J. Cell. Biochem. 107: 516–527, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Cripto is a multifunctional cell surface protein with important roles in vertebrate embryogenesis and the progression of human tumors. While Cripto has been shown to modulate multiple signaling pathways, its binding partners do not appear to fully explain its molecular actions. Therefore, we conducted a screen aimed at identifying novel Cripto-interacting proteins. This screen led to our identification of glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone that is also expressed at the surfaces of tumor cells. Here we demonstrate that Cripto and GRP78 interact at the cell surfaces of multiple cell lines and that their interaction is independent of prior association within the ER. Interestingly, short hairpin RNA knockdown of endogenous GRP78 resulted in enhanced transforming growth factor β (TGF-β) signaling, indicating that like Cripto, GRP78 inhibits this pathway. We further show that when coexpressed, GRP78 and Cripto collaborate to antagonize TGF-β responses, including Smad phosphorylation and growth inhibition of prostate cancer cells grown under anchorage-dependent or -independent conditions. Finally, we provide evidence that cells coexpressing GRP78 and Cripto grow much more rapidly in soft agar than do cells expressing either protein individually. Together, our results indicate that these proteins bind at the cell surface to enhance tumor growth via the inhibition of TGF-β signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号