首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metaseiulus (=Typhlodromus or Galendromus) occidentalis is an important biological control agent. Functional genomic studies on this predator have been hampered by the lack of reverse genetic tools such as RNA interference (RNAi). In the current study, we evaluated possible RNAi responses in M. occidentalis females by feeding double-stranded RNA (dsRNA) of RpL11, RpS2, RpL8, or Pros26.4 genes in 20 % sucrose solution. Females needed to subsequently feed on two-spotted spider mites (Tetranychus urticae) to elicit a nearly complete loss of egg production. The corresponding gene knockdown was robust, long-term, and was observed in the very few eggs produced (systemic or parental RNAi). Interestingly, dsRNA-mediated gene knockdown could not be induced if these predators were provided only the sucrose diet after ingesting dsRNAs; T. urticae had to be provided to elicit the RNAi response. However, the spider mite diet was not needed for sustaining the dsRNA-mediated gene knockdown once it commenced. Oral delivery of dsRNA will be a valuable tool for efficient genome-wide functional screens in this important predatory mite.  相似文献   

2.
3.
4.
5.
Effective RNA interference (RNAi) methods have been developed in many pest species, enabling exploration of gene function. Until now RNAi had not been attempted in the cat flea, Ctenocephalides felis, although the development of RNAi approaches would open up potential avenues for control of this important pest. This study aimed to establish if an RNAi response occurs in adult C. felis upon exposure to double-stranded RNA (dsRNA), which administration methods for dsRNA delivery could bring about effective gene knockdown and to investigate dynamics of any RNAi response. Knockdown of 80% of GSTσ was achieved by intrahaemoceolic microinjection of dsGSTσ but this invasive technique was associated with relatively high mortality rates. Immersing C. felis in dsGSTσ or dsDicer-2 overnight resulted in 65% knockdown of GSTσ or 60% of Dicer-2, respectively, and the degree of knockdown was not improved by increasing the dsRNA concentration in the bathing solution. Unexpectedly, the greatest degree of knockdown was achieved with the continuous administration of dsRNA in whole blood via a membrane feeding system, resulting in 96% knockdown of GSTσ within 2?days and sustained up to, at least, 7?days. Thus, unlike in many other species, the gut nucleases do not impair the RNAi response to ingested dsRNA in C. felis. A modest, but significant, upregulation of Dicer-2 and Argonaute2 was detectable 3?h after exposure to exogenous dsRNA, implicating the short-interfering RNA pathway. To our knowledge this study represents the first demonstration of experimentally induced RNAi in the cat flea as well as giving insight into how the gene knockdown response progresses.  相似文献   

6.
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity.In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.  相似文献   

7.
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.  相似文献   

8.
RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double‐strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase‐2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12–14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high‐efficiency determination of gene functions in this species.  相似文献   

9.
RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda cells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells and Spodoptera frugiperda larvae treated with CFII conjugated 32P-UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.  相似文献   

10.
RNA interference (RNAi) technology enables to study specific gene functions also in social insects, which are otherwise difficult to access for genetic manipulations. The recent sequencing of the genomes from seven ant species made these members of the Formicidae available for knockdown studies. However, for this purpose the RNAi technology first needs to be adapted for application in ants. Studies on other insects show that the effectiveness of RNAi is quite species-specific and can depend on several experimental parameters such as the investigated stage of the insect, the target gene and/or the dsRNA delivery method. RNAi in ants through feeding of dsRNA is a preferable approach, since knockdown can be achieved in individuals without interfering with the animal’s physiology in contrast to injection of dsRNA. Here, we present a protocol for gene knockdown in Formicidae by feeding of dsRNA to worker animals. The expression of a peptidoglycan recognition protein gene, PGRP-LB, was efficiently knocked down in the body of Camponotus floridanus worker ants. Moreover, we describe a relatively cheap method to extract dsRNA from bacteria in order to obtain large quantities needed for feeding experiments.  相似文献   

11.
RNA interference (RNAi) has been widely employed as a useful alternative to study gene function in insects, including triatomine bugs. However, several aspects related to the RNAi mechanism and functioning are still unclear. The aim of this study is to investigate the persistence and the occurrence of systemic and parental RNAi in the triatomine bug Rhodnius prolixus. For such, the nitrophorins 1 to 4 (NP1-4), which are salivary hemeproteins, and the rhodniin, an intestinal protein, were used as targets for RNAi. The dsRNA for both molecules were injected separately into 3rd and 5th instar nymphs of R. prolixus and the knockdown (mRNA levels and phenotype) were progressively evaluated along several stages of the insect's life. We observed that the NP1-4 knockdown persisted for more than 7 months after the dsRNA injection, and at least 5 months in rhodniin knockdown, passing through various nymphal stages until the adult stage, without continuous input of dsRNA. The parental RNAi was successful from the dsRNA injection in 5th instar nymphs for both knockdown targets, when the RNAi effects (mRNA levels and phenotype) were observed at least in the 2nd instar nymphs of the F1 generation. However, the parental RNAi did not occur when the dsRNA was injected in the 3rd instars. The confirmation of the long persistence and parental transmission of RNAi in R. prolixus can improve and facilitate the utilization of this tool in insect functional genomic studies.  相似文献   

12.

Background

The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown.

Methodology/Principal Findings

Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans.

Conclusions/Significance

Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.  相似文献   

13.
RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.  相似文献   

14.
Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.  相似文献   

15.
A major prerequisite to understanding the evolution of developmental programs includes an appreciation of gene function in a comparative context. RNA interference (RNAi) represents a powerful method for reverse genetics analysis of gene function. However, RNAi protocols exist for only a handful of arthropod species. To extend functional analysis in basal arthropods, we developed a RNAi protocol for the two-spotted spider mite Tetranychus urticae focusing on Distal-less (Dll), a conserved gene involved in appendage specification in metazoans. First, we describe limb morphogenesis in T. urticae using confocal and scanning electron microscopy. Second, we examine T. urticae Dll (Tu-Dll) mRNA expression patterns and correlate its expression with appendage development. We then show that fluorescently labeled double-stranded RNA (dsRNA) and short interfering RNA (siRNA) molecules injected into the abdomen of adult females are incorporated into the oviposited eggs, suggesting that dsRNA reagents can be systemically distributed in spider mites. Injection of longer dsRNA as well as siRNA induced canonical limb truncation phenotypes as well as the fusion of leg segments. Our data suggest that Dll plays a conserved role in appendage formation in arthropods and that such conserved genes can serve as reliable starting points for the development of functional protocols in nonmodel organisms.  相似文献   

16.
The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects.  相似文献   

17.
18.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

19.
Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi) induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号