首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission.

Methodology

Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 Å resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date.

Conclusion

The structure of AaegOBP1 ( = AaegOBP39) shares the common fold of insect OBPs with six α-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this “lid” may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.  相似文献   

2.
In insects, the transport of airborne, hydrophobic odorants and pheromones through the sensillum lymph is generally thought to be accomplished by odorant-binding proteins (OBPs). We report the structural and functional properties of a honeybee OBP called ASP2, heterologously expressed by the yeast Pichia pastoris. ASP2 disulfide bonds were assigned after classic trypsinolysis followed by ion-spray mass spectrometry combined with microsequencing. The pairing [Cys(I)-Cys(III), Cys(II)-Cys(V), Cys(IV)-Cys(VI)] was found to be identical to that of Bombyx mori OBP, suggesting that this pattern occurs commonly throughout the highly divergent insect OBPs. CD measurements revealed that ASP2 is mainly constituted of alpha helices, like other insect OBPs, but different from lipocalin-like vertebrate OBPs. Gel filtration analysis showed that ASP2 is homodimeric at neutral pH, but monomerizes upon acidification or addition of a chaotropic agent. A general volatile-odorant binding assay allowed us to examine the uptake of some odorants and pheromones by ASP2. Recombinant ASP2 bound all tested molecules, except beta-ionone, which could not interact with it at all. The affinity constants of ASP2 for these ligands, determined at neutral pH by isothermal titration calorimetry, are in the micromolar range, as observed for vertebrate OBP. These results suggest that odorants occupy three binding sites per dimer, probably one in the core of each monomer and another whose location and biological role are questionable. At acidic pH, no binding was observed, in correlation with monomerization and a local conformational change supported by CD experiments.  相似文献   

3.
Chemical recognition plays an important role for the survival and reproduction of many insect species. Odorant binding proteins (OBPs) are the primary components of the insect olfactory mechanism and have been documented to play an important role in the host-seeking mechanism of mosquitoes. They are “transport proteins” believed to transport odorant molecules from the external environment to their respective membrane targets, the olfactory receptors. The mechanism by which this transport occurs in mosquitoes remains a conundrum in this field. Nevertheless, OBPs have proved to be amenable to conformational changes mediated by a pH change in other insect species. In this paper, the effect of pH on the conformational flexibility of mosquito OBPs is assessed computationally using molecular dynamics simulations of a mosquito OBP “CquiOBP1” bound to its pheromone 3OG (PDB ID: 3OGN). Conformational twist of a loop, driven by a set of well-characterized changes in intramolecular interactions of the loop, is demonstrated. The concomitant (i) closure of what is believed to be the entrance of the binding pocket, (ii) expansion of what could be an exit site, and (iii) migration of the ligand towards this putative exit site provide preliminary insights into the mechanism of ligand binding and release of these proteins in mosquitoes. The correlation of our results with previous experimental observations based on NMR studies help us provide a cardinal illustration on one of the probable dynamics and mechanism by which certain mosquito OBPs could deliver their ligand to their membrane-bound receptors at specific pH conditions.  相似文献   

4.
Anopheles gambiae mosquitoes that transmit Plasmodium falciparum malaria use a series of olfactory cues present in human sweat to locate their hosts for a blood meal. Recognition of these odor cues occurs through the interplay of odorant receptors and odorant-binding proteins (OBPs) that bind to odorant molecules and transport and present them to the receptors. Recent studies have implicated potential heterodimeric interactions between two OBPs, OBP1 and OBP4, as important for perception of indole by the mosquito (Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., Eliopoulos, E., Guerin, P. M., Iatrou, K., Justice, R. W., Kröber, T., Marinotti, O., Tsitoura, P., Woods, D. F., and Walter, M. F. (2010) PLoS ONE 5, e9471; Qiao, H., He, X., Schymura, D., Ban, L., Field, L., Dani, F. R., Michelucci, E., Caputo, B., della Torre, A., Iatrou, K., Zhou, J. J., Krieger, J., and Pelosi, P. (2011) Cell. Mol. Life Sci. 68, 1799–1813). Here we present the 2.0 Å crystal structure of the OBP4-indole complex, which adopts a classical odorant-binding protein fold, with indole bound at one end of a central hydrophobic cavity. Solution-based NMR studies reveal that OBP4 exists in a molten globule state and binding of indole induces a dramatic conformational shift to a well ordered structure, and this leads to the formation of the binding site for OBP1. Analysis of the OBP4-OBP1 interaction reveals a network of contacts between residues in the OBP1 binding site and the core of the protein and suggests how the interaction of the two proteins can alter the binding affinity for ligands. These studies provide evidence that conformational ordering plays a key role in regulating heteromeric interactions between OBPs.  相似文献   

5.
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.  相似文献   

6.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   

7.
8.
Vertebrate odorant-binding proteins (OBPs) are small extracellular proteins belonging to the lipocalin superfamily. They have been supposed to play a role in events of odorant molecules detection by carrying, deactivating, and/or selecting odorant molecules. The OBPs share a conserved folding pattern, an eight-stranded beta-barrel flanked by an alpha-helix at the C-terminal end of the polypeptide chain. The beta-barrel creates a central nonpolar cavity whose role is to bind and transport hydrophobic odorant molecules. These proteins reversibly bind odorant molecules with dissociation constants ranging from nanomolar to micromolar range. In this work, we have studied the structural features of the OBP from pig and from cow by phosphorescence spectroscopy. The obtained results demonstrate that the indolic phosphorescence of the two studied proteins can be readily detected at ambient temperature solutions and that it is owed exclusively to the internal tryptophan residue located next to the ligand binding cavity, which is generally conserved in the mammalian OBPs. In addition, while both the phosphorescence spectrum and the lifetime yield a picture of the fold of the studied protein in good agreement with the protein crystallographic structures, the triplet probe points out that in solution the polypeptide structure of the both investigated OBPs exists as a multiplicity of slowly interconverting protein conformations. Finally, this work also demonstrates that it is possible to directly detect the binding of the ligands to OBPs as variations of the protein luminescence features, thus, representing the very first observation reported in the literature so far that a fast and direct assay can be used for monitoring the binding of ligands to OBPs.  相似文献   

9.
10.
Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.  相似文献   

11.
The sex pheromone present in the pre-ovulatory urine of female Asian elephants is the simple lipid (Z)-7-dodecen-1-yl acetate (Z7-12:Ac). Using radiolabeled probes, we have identified a pheromone binding protein that is abundant in the mucus of the trunk; this protein is homologous to a class of lipocalins known as odorant binding proteins (OBPs). To test five previously proposed roles for the OBP in chemosensory perception, we determined the equilibrium dissociation constant of the OBP-pheromone complex, as well as the association and dissociation rates. Using a mathematical model in conjunction with experimental data, we suggest that the binding and release of the pheromone by the OBP are too slow for the OBP to function in transporting the pheromone through the mucus that covers the olfactory sensory epithelium. Our data indicate that the elephant OBP only modestly increases the solubility of the pheromone in the mucus. Our results are most consistent with the notion that elephant OBP functions as a scavenger of the pheromone and possibly other ligands, including odorants. In light of these findings, and published results for other mammalian OBP-ligand complexes, a general model for the role of OBPs in mammalian olfaction is proposed. Moreover, the potential implications of these findings for interaction of Z7-12:Ac with insect antennal proteins are discussed.  相似文献   

12.
13.
Odorant binding proteins (OBPs) play a central role in transporting odorant molecules from the sensillum lymph to olfactory receptors to initiate behavioral responses. In this study, the OBP of Macrocentrus cingulum McinOBP1 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR experiments indicate that the McinOBP1 is expressed mainly in adult antennae, with expression levels differing by sex. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the McinOBP1 can bind green-leaf volatiles, including aldehydes and terpenoids, but also can bind aliphatic alcohols with good affinity, in the order trans-2-nonenal>cis-3-hexen-1-ol>trans-caryophelle, suggesting a role of McinOBP1 in general odorant chemoreception. We chose those three odorants for further homology modeling and ligand docking based on their binding affinity. The Val58, Leu62 and Glu130 are the key amino acids in the binding pockets that bind with these three odorants. The three mutants, Val58, Leu62 and Glu130, where the valine, leucine and glutamic residues were replaced by alanine, proline and alanine, respectively; showed reduced affinity to these odorants. This information suggests, Val58, Leu62 and Glu130 are involved in the binding of these compounds, possibly through the specific recognition of ligands that forms hydrogen bonds with the ligands functional groups.  相似文献   

14.
Two high-quality cDNA libraries were constructed from female and male antennae of the cotton bollworm Helicoverpa armigera (Hübner). The titers were approximately 2.0 × 106 pfu/ml for females and 2.3 × 106 pfu/ml for males, and this complies with the test requirement. From the libraries, 1750 male ESTs and 1640 female ESTs were sequenced and further analyzed. We identified 15 olfactory genes (12 are new), and 14 of them have the characteristic six conserved cysteine residues. With the exception of OBP9, all the genes were classified as classical OBP genes. By alignment and cluster analysis, the 14 classical OBPs were divided into pheromone binding protein (PBP) genes, odorant binding protein (OBP) genes, general odorant binding protein 1 (GOBP1) genes, general odorant binding protein 2 (GOBP2) genes and antennae binding protein (ABP) genes. Among these genes, we obtained three PBP genes (PBP1–PBP3) including two new PBP genes, one new ABP gene, nine new OBP genes (OBP1–OBP9), one known GOBP1 gene and one known GOBP2 gene. Furthermore, the expression patterns of these 14 classical OBP genes were investigated in various tissues by real-time quantitative polymerase chain reaction (qPCR). The results indicated that some OBP genes are expressed differently in different sexes and tissues, but most of them are highly expressed in antennae.  相似文献   

15.
气味结合蛋白OBPs在蜜蜂识别气味分子和生理反应的过程中起到了十分重要的作用。本研究通过利用生物信息学软件预测分析中华蜜蜂Apis cerana cerana气味结合蛋白基因OBP4(AcerOBP4)编码的蛋白理化特性和结构特征;采用MEGA 5.2软件中的邻位相连法(Neighbor-joining, NJ)构建AcerOBP4及其它昆虫OBPs的系统发育树;通过qRT-PCR技术分析AcerOBP4在中华蜜蜂的哺育蜂、采集蜂和1日龄工蜂各组织的表达情况。结果表明,中华蜜蜂和意大利蜜蜂Apis melliferaOBP4(AmelOBP4)氨基酸同源性为78%,AcerOBP4在中华蜜蜂的触角表达量最高,其次是足和头部组织表明该基因与蜜蜂的嗅觉行为密切相关。此外,AcerOBP4在蜜蜂脑部有一定的表达,但是在腹部组织表达量很低。该研究结果丰富了蜜蜂OBPs表达特性的研究数据,同时也为继续深入研究OBP4在中华蜜蜂中是否影响嗅觉行为提供了基础。  相似文献   

16.
Odorant-binding proteins (OBPs) are lipocalins secreted in the nasal mucus of vertebrates, which convey odorants to their neuronal receptors. We compared the binding properties of a recombinant rat OBP (OBP-1F) using a set of six odorants of various chemical structures. We examined the binding properties by both fluorescent probe competition and isothermal titration calorimetry. OBP-1F affinity constants, in the micromolar range, varied by more than one order of magnitude and were roughly correlated to the odorant size. The observed binding stoichiometry was found to be around one odorant per dimer. Using tyrosine differential spectroscopy, the binding of ligand was shown to induce local conformational changes. A three-dimensional structure of OBP-1F, modelled using the known structure of aphrodisin as template, allowed us to suggest the location of the observed structural changes outside of the binding pocket. These results are consistent with one binding site located in one of the two beta-barrels of the OBP-1F dimer and a subtle conformational change correlated with binding of an odorant molecule, which hampers uptake of a second odorant by the other hydrophobic pocket.  相似文献   

17.
β2 adrenergic receptor (β2AR) regulated many key physiological processes by activation of a heterotrimeric GTP binding protein (Gs protein). This process could be modulated by different types of ligands. But the details about this modulation process were still not depicted. Here, we performed molecular dynamics (MD) simulations on the structures of β2AR-Gs protein in complex with different types of ligands. The simulation results demonstrated that the agonist BI-167107 could form hydrogen bonds with Ser2035.42, Ser2075.46 and Asn2936.55 more than the inverse agonist ICI 118,551. The different binding modes of ligands further affected the conformation of β2AR. The energy landscape profiled the energy contour map of the stable and dissociated conformation of Gαs and Gβγ when different types of ligands bound to β2AR. It also showed the minimum energy pathway about the conformational change of Gαs and Gβγ along the reaction coordinates. By using interactive essential dynamics analysis, we found that Gαs and Gβγ domain of Gs protein had the tendency to separate when the inverse agonist ICI 118,551 bound to β2AR. The α5-helix had a relatively quick movement with respect to transmembrane segments of β2AR when the inverse agonist ICI 118,551 bound to β2AR. Besides, the analysis of the centroid distance of Gαs and Gβγ showed that the Gαs was separated from Gβγ during the MD simulations. Our results not only could provide details about the different types of ligands that induced conformational change of β2AR and Gs protein, but also supplied more information for different efficacies of drug design of β2AR.  相似文献   

18.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) mediate both perception and release of chemical stimuli in insects. The genome of the honey bee contains 21 genes encoding OBPs and 6 encoding CSPs. Using a proteomic approach, we have investigated the expression of OBPs and CSPs in the mandibular glands of adult honey bees in relation to caste and age. OBP13 is mostly expressed in young individuals and in virgin queens, while OBP21 is abundant in older bees and is prevalent in mated queens. OBP14, which had been found in larvae, is produced in hive workers' glands. Quite unexpectedly, the mandibular glands of drones also contain OBPs, mainly OBP18 and OBP21. We have expressed three of the most represented OBPs and studied their binding properties. OBP13 binds with good specificity oleic acid and some structurally related compounds, OBP14 is better tuned to monoterpenoid structures, while OBP21 binds the main components of queen mandibular pheromone as well as farnesol, a compound used as a trail pheromone in the honey bee and other hymenopterans. The high expression of different OBPs in the mandibular glands suggests that such proteins could be involved in solubilization and release of semiochemicals.  相似文献   

19.
20.
We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthaseis the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε''s conformations is predominant. The assay measures kinetics of ε''s binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε''s conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号