首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca2+), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca2+ imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca2+ biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca2+ level. The protocol also allows “in-slice measurement” of absolute Ca2+ concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca2+ signaling as well as the potential involvement of Ca2+ in photoreceptor death and retinal degeneration.  相似文献   

3.
在已建立的核定位信号 (nuclearlocalizationsignal,NLS)筛选系统的基础上 ,对这一系统进行了改进并对改进的系统进行了验证。将小鼠 1 1天胚胎cDNA文库插入改进后的筛选载体的多克隆位点 ,转化酵母宿主菌。然后将约 1 0 4 个酵母克隆接种于选择性平板上进行筛选 ,得到了 2 2个可在选择性培养基上生长的克隆。分析了其中 1 8个克隆的DNA序列 ,见到 1 3个克隆含有以正确读框融合的编码NLS的基因片段。取其中 3个克隆的插入片段与绿色荧光蛋白基因融合后在哺乳类细胞内表达 ,证明了其在哺乳类细胞中的核定位功能。研究证明 ,构建的核定位信号筛选系统 ,能够有效地从cDNA文库中筛选核定位蛋白的基因  相似文献   

4.
Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, WldS. The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles.  相似文献   

5.
We have generated a new and improved transgenic mouse strain that permits a temporally controlled expression of transgenes throughout mammary gland development. High expression of the tetracycline-regulatible transactivator (tTA) under control of the mouse mammary tumor virus long terminal repeat (MMTV-LTR) is restricted to mammary epithelial cells and the salivary gland. The novel MMTV-tTA mouse strain induces a sustained transactivation of responder transgenes, which can be swiftly suppressed through administration of doxycycline (Dox). An important characteristic of this strain is its expression in early progenitor cells of mammary gland anlagen beginning at day 13.5 of embryonic development. We show here that the MMTV-tTA can be used in combination with GFP reporter strains to visualize CK8/CK14-dual positive progenitors in newborn females and their derived basal and luminal epithelial cell lineages in adult females. Our observations suggest that the novel MMTV-tTA can be utilized to express exogenous proteins in multipotent mammary progenitors during the earliest stages of mammary gland development to assess their biological significance throughout mammogenesis. Moreover, we demonstrate that the expression of the MMTV-tTA is sustained during mammary gland tumorigenesis in female mice expressing wildtype ErbB2. This makes this strain particular valuable to target the expression of exogenous proteins into developing mammary tumors to assess their significance in biological processes, such as tumor cell growth and survival, metabolism, and metastasis.  相似文献   

6.
7.
Abstract: Nerve terminals (“synaptosomes”) isolated from rat brain hippocampus were loaded with the fluorescent Ca2+ indicator fura-2 and were subjected to depolarization with an elevated K+ concentration in a stopped-flow spectrophotometer to measure the activity of voltage-gated Ca2+ channels in the presynaptic membrane. Three components of Ca2+ influx were seen, which were tentatively identified as two classes of voltage-dependent Ca2+ channels with different inactivation kinetics (τ of ~60 ms and 1 s, respectively) and Na+/Ca2+ exchange working in the “reverse” mode. The activity of both classes of voltage-dependent Ca2+ channels was slightly augmented by the phorbol ester phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), but the effect of PMA was markedly enhanced by the protein phosphatase inhibitor okadaic acid (OKA). The PKC inhibitors calphostin C and dihydrosphingosine (DHS) caused a prompt decrease in voltage-dependent Ca2+ channel activity, but the effect of DHS could be showed by coaddition of OKA. These results suggest that the activity of presynaptic voltage-dependent Ca2+ channels in the hippocampus is under a dynamic balance between PKC phosphorylation (leading to activation) and protein phosphatase dephosphorylation (leading to inactivation) and that both of these metabolic pathways are tonically active in the nerve terminals.  相似文献   

8.
Postnatal Development of Cholinergic Enzymes and Receptors in Mouse Brain   总被引:12,自引:0,他引:12  
The developmental profiles for the cholinergic enzymes acetylcholinesterase and choline acetyltransferase, and the muscarinic and nicotinic receptors were determined in whole mouse brain. The enzyme activities (per milligram of protein) increased steadily from birth, reaching adult levels at 20 days of age. These increases were primarily due to increases in Vmax. Muscarinic receptor numbers, measured by [3H]quinuclidinyl benzilate binding, also increased from birth to 25 days of age. Brain nicotinic receptors were measured with the ligands L-[3H]nicotine and alpha-[125I]-bungarotoxin. Neonatal mouse brain had approximately twice the number of alpha-bungarotoxin binding sites found in adult mouse brain. Binding site numbers rose slightly until 10 days of age, after which they decreased to adult values, which were reached at 25 days of age. The nicotine binding site was found in neonatal brain at concentrations comparable to those at the alpha-bungarotoxin site followed by a steady decline in nicotine binding until adult values were reached. Thus, brain nicotinic and muscarinic systems develop in totally different fashions; the quantity of muscarinic receptors increases with age, while the quantity of nicotinic receptors decreases. It is conceivable that nicotinic receptors play an important role in directing the development of the cholinergic system.  相似文献   

9.
A comparative morphometric analysis of electron photomicrographs of the presynaptic terminals in cultured in vitro for 7 days CA1 hippocampal slices from 7-day-old rats and in the hippocampi of 14-day-old rats was conducted. As compared with the terminals of intact neurons, the terminals of cultured cells were larger and contained a greater amount of synaptic vesicles, which, however, to a lesser extent were united in clusters. Distributions of the vesicle profiles in cultured slices were characterized by a greater distance to the nearest neighbor. Obviously, such structural features should be taken into account when interpreting data obtained in electrophysiological studies on hippocampal slice cultures.  相似文献   

10.
Regulation of Prenatal and Postnatal Protein Synthesis in Mouse Brain   总被引:3,自引:3,他引:0  
Abstract: Regulation of protein synthesis during prenatal and postnatal brain development was examined using postmitochondrial supernatant (PMS) fractions and isolated ribosome-pH 5 enzyme systems from fetal, neonatal, and adult neural tissue. The rate of polyuridylic acid (poly-U)-dependent protein synthetic activity was inversely proportional to the endogenous rate of protein synthesis in either the PMS fractions or ribosomal preparations. A careful analysis of the kinetics of the poly-U-dependent polypeptide synthesis revealed that there was a lag in the time at which certain of the PMS preparations could begin to utilize the poly-U template as sole source of mRNA. The lag period was dependent upon the developmental age of the neural tissue used and the Mg2+ concentration of the protein synthesis reaction. Since previous work reported that the observed developmental decrease in the rate of polypeptide synthesis utilizing a poly-U template could not be measured in a purified ribosomal-pH 5 enzyme system, ribosomes were obtained by several isolation techniques to determine if the purification procedure might have affected the ribosomes in some manner by removing a specific protein(s) involved in ribosome-cytosol interactions. At 6 mM-Mg2+ the rate of poly-U-dependent protein synthesis was inversely proportional to the rate of endogenous synthesis and depended upon the method used to isolate the ribosomes: microsomes ∼Triton X-100-treated < DOC-treated < KCl-treated. However, there was no age-dependent effect with any of the ribosomal preparations. The data suggest that there is a developmental modulating effect of ribosomal activity in PMS preparations which is not found in association with the isolated ribosome-pH 5 enzyme protein synthesizing system.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by motoneuron death. Clinical and experimental studies in animal models of ALS have found gender differences in the incidence and onset of disease, suggesting that female hormones may play a beneficial role. Cumulative evidence indicates that 17β-estradiol (17βE2) has a neuroprotective role in the central nervous system. We have previously developed a new culture system by using rat spinal cord embryonic explants in which motoneurons have the singularity of migrating outside the spinal cord, growing as a monolayer in the presence of glial cells. In this study, we have validated this new culture system as a useful model for studying neuroprotection by estrogens on spinal cord motoneurons. We show for the first time that spinal cord motoneurons express classical estrogen receptors and that 17βE2 activates, specifically in these cells, the Akt anti-apoptotic signaling pathway and two of their downstream effectors: GSK-3β and Bcl-2. To further validate our system, we demonstrated neuroprotective effects of 17βE2 on spinal cord motoneurons when exposed to the proinflammatory cytokines TNF-α and IFN-γ. These effects of 17βE2 were fully reverted in the presence of the estrogen receptor antagonist ICI 182,780. Our new culture model and the results presented here may provide the basis for further studies on the effects of estrogens, and selective estrogen receptor modulators, on spinal cord motoneurons in the context of ALS or other motoneuron diseases.  相似文献   

12.
N-methyl-D-aspartate (NMDA) stimulated release of [3H]noradrenaline (NA) from prelabelled rat spinal cord slices. The release was partially insensitive to tetrodotoxin (TTX) and was inhibited by the NMDA antagonist MK-801. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) also evoked release of [3H]NA, which was enhanced by blocking AMPA receptor desensitization with cyclothiazide. AMPA-evoked release was inhibited by the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX) but was not affected by TTX. NMDA and AMPA showed synergistic effects, indicating co-existence of NMDA and AMPA receptors on noradrenergic terminals. Kainate evoked [3H]NA release only at high concentrations and the release was not potentiated by blocking kainate receptor desensitization with concanavalin A. Thus, the results indicate that there are stimulatory presynaptic NMDA and AMPA receptors on noradrenergic axon terminals in the spinal cord and that they interact synergistically to evoke release of [3H]NA.  相似文献   

13.
The ability of embryonic germinal cells (EG) to differentiate into primordial germinal cells (PGCs) and later into gametes during early developmental stages is a perfect model to address our hypothesis about cancer and infertility. This protocol shows how to isolate primordial germinal cells from developing gonads in 10.5-11.5 days post coitum (dpc) mouse embryos. Developing gonadal ridges from mouse embryos (C57BL6J) were dissociated by mechanical disruption with collagenase, then plated in a mouse embryo fibroblast feeder layer (MEF-CF1) that was previously mitotically inactivated with mitomycin C in the presence of knockout media and supplemented with Leukemia Inhibitor Factor (LIF), basic Fibroblast Growth Factor (bFGF), and Stem Cell Factor (SCF). Using these optimized methods for PCG identification, isolation, and establishment of culture conditions permits long term cultures of EG cells for more than 40 days. The embryonic germinal cell lines showed embryonic phenotype and expression of common used markers of the pluripotent state. Isolation and derivation of germinal cells in culture provide a tool to understand their development in vitro and offer the opportunity to monitor cumulative damage at genetic and epigenetic levels after exposure to oxidative stress.Download video file.(316M, mp4)  相似文献   

14.
Testing the fate of embryonic or pluripotent stem cell-derivatives in in vitro protocols has led to controversial outcomes that do not necessarily reflect their in vivo potential. Preferably, these cells should be placed in a proper embryonic environment in order to acquire their definite phenotype. Furthermore, cell lineage tracing studies in the mouse after labeling cells with dyes or retroviral vectors has remained mostly limited to early stage mouse embryos with still poorly developed organs. To overcome these limitations, we designed standard and ultrasound-mediated microinjection protocols to inject various agents in targeted regions of the heart in mouse embryos at E9.5 and later stages of development.  Embryonic explant or embryos are then cultured or left to further develop in utero. These agents include fluorescent dyes, virus, shRNAs, or stem cell-derived progenitor cells. Our approaches allow for preservation of the function of the organ while monitoring migration and fate of labeled and/or injected cells. These technologies can be extended to other organs and will be very helpful to address key biological questions in biology of development.  相似文献   

15.
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits.  相似文献   

16.
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.  相似文献   

17.
Abstract : Effects of selective Ca2+ channel blockers on GABAergic inhibitory postsynaptic currents (IPSCs) were studied in the acutely dissociated rat nucleus basalis of Meynert (nBM) neurons attached with nerve endings, namely, the “synaptic bouton” preparation, and in the thin slices of nBM, using nystatin perforated and conventional whole-cell patch recording modes, respectively. In the synaptic bouton preparation, nicardipine (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) reduced the frequency of spontaneous postsynaptic currents by 37 and 22%, respectively, whereas ω-conotoxin-GVIA had no effect. After blockade of L- and P/Q-type Ca2+ channels, successive removal of Ca2+ from external solution had no significant effect on the residual spontaneous activities, indicating that N-, R-, and T-type Ca2+ channels are not involved in the spontaneous GABA release. Thapsigargin, but not ryanodine, increased the frequency of spontaneous IPSCs in both the synaptic bouton and slice preparations, suggesting the partial contribution of the intracellular Ca2+ storage site to the spontaneous GABA release. In contrast, ω-conotoxin-GVIA (3 × 10-6M) and ω-conotoxin-MVIIC (3 × 10-6M) suppressed the evoked IPSCs by 31 and 37%, respectively, but nicardipine produced no significant effect. The residual evoked currents were abolished in Ca2+-free external solution but not in the external solution containing 10-5M Ni2+, suggesting the involvement of N-, P/Q-, and R-type Ca2+ channels but not L- and T-type ones in the evoked IPSCs. Neither thapsigargin nor ryanodine had any significant effects on the evoked IPSCs. It was concluded that Ca2+ channel subtypes responsible for spontaneous transmitter release are different from those mediating the transmitter release evoked by nerve stimulation.  相似文献   

18.
Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches.  相似文献   

19.
目的采用体外受精的技术,对L858R、TL清洁级小鼠,以及来源于野外的中华小家鼠,和感染肺炎克来伯氏菌的Balb/c-nu裸鼠进行生物净化。方法对于需要净化的小鼠的雄鼠,采集附睾的精子,放入HTF溶液中获能,然后加入经过超排的卵团,体外受精。20-22 h后,挑选形态正常的二细胞胚胎,在净化实验室,移植给假孕的SPF级ICR母鼠,待产仔。仔鼠断奶后,随机选择仔鼠及带奶母鼠送检。结果体外受精的胚胎,经过移植后,均顺利产仔;仔鼠及母鼠的微生物级别,均达到SPF级。结论对于微生物级别较低的实验小鼠,采用在洁净实验室内做体外受精、胚胎移植的方法,可以提高实验小鼠的微生物级别。  相似文献   

20.
Amyotrophic lateral sclerosis is a devastating motoneuron disorder for which no effective treatment exists. There is some evidence for neuroprotective effects of valproic acid (VPA). The beneficial effects, however, are limited due to the adverse effects of VPA. To overcome this problem, a number of VPA derivates with fewer side effects have been synthesized. In the present study, we investigated the viability of highly purified embryonic motoneurons cultured on glial feeder layers, composed of either astrocytes or Schwann cells, or in monoculture, in presence of VPA and its three derivates 3-propyl-heptanoic acid (3-PHA), PE-4-yn enantiomers (R- and S-PE-4-yn). An excitotoxic stimulus, kainate (KA), was added at day in vitro 9 (DIV9) and the neuroprotective effect of either simultaneous incubation (DIV9) or pre-incubation (DIV1) of VPA and its derivates was tested. The survival of motoneurons under simultaneous application of KA and VPA derivates was not remarkably increased. Pre-incubation with VPA and even more with the derivates before the addition of KA, however, significantly reduced their vulnerability against the KA-induced neurotoxic effect. Our data suggest that the neuroprotective capacities of VPA and its three derivates tested here drastically increase when they are added several days before KA. Most prominent neuroprotective effects were seen for the PE-4-yn enantiomers. Patch-clamp experiments revealed an antiexcitotoxic effect of the S-PE-4-yn enantiomer that reduces the frequency of postsynaptic currents and enhances the inhibitory postsynaptic transmission dependent on the co-culture condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号