首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria ( Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test.  相似文献   

2.
The use of natural fibers as reinforcement for thermoplastics has generated much interest due to their low cost, possibility of environmental protection and use of locally available renewable resources. In this work the mechanical and morphological properties of high density polyethylene/pre-treated and modified residues from sugarcane bagasse cellulose composites were analyzed. Composites were produced by a thermokinetic mixer. The microstructural analyses of fracture surface from composites can be easily evaluated by microscopic techniques. Results showed that the modification of sugarcane bagasse cellulose with zirconium oxychloride was successfully accomplished and that this reinforcement material with high density polyethylene showed tensile strength higher than non-modified sugarcane bagasse cellulose. Modification in the sugarcane bagasse cellulose influenced directly in mechanical properties of the composite material. This can be observed by the fracture surface, which showed that modified cellulose sugarcane bagasse improved interfacial adhesion between fiber and matrix.  相似文献   

3.
Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.  相似文献   

4.
Suspended solids in the nutrient medium for Acetobacter xylinium in a rotating disk bioreactor become incorporated into the gelatinous mat of bacterial cellulose as it forms. Embedding fibers of ordinary cellulose creates composites with enhanced strength and the toughness of bacterial cellulose. Purified cellulose and elongated fibers from paper are incorporated differently than are spherical particles such as silica gel. About 90% of the final cellulose can come from scrap paper, and dried composite sheets were much stronger than plain bacterial cellulose per unit area.  相似文献   

5.
Nanocomposite films of bacterial cellulose (10-50 wt%) and polyurethane-based resin were prepared and characterized for physical, mechanical and dielectric properties. It was observed that the bacterial cellulose swelled in ethanol, and that bacterial cellulose sheets prepared from fibre suspension in ethanol exhibited a relatively less dense structure in comparison to those processed from aqueous fibre suspension. Nanocomposites fabricated from ethanol suspension also showed inferior mechanical properties but superior dielectric properties. Higher amounts of free proton generated from ethanol can induce more dipole mechanism; therefore, there is higher mobility of proton localized along cellulose chain, indicating that higher dielectric constants can be obtained.  相似文献   

6.
Palladium-bacterial cellulose membranes for fuel cells   总被引:4,自引:0,他引:4  
Bacterial cellulose is a versatile renewable biomaterial that can be used as a hydrophilic matrix for the incorporation of metals into thin, flexible, thermally stable membranes. In contrast to plant cellulose, we found it catalyzed the deposition of metals within its structure to generate a finely divided homogeneous catalyst layer. Experimental data suggested that bacterial cellulose possessed reducing groups capable of initiating the precipitation of palladium, gold, and silver from aqueous solution. Since the bacterial cellulose contained water equivalent to at least 200 times the dry weight of the cellulose, it was dried to a thin membranous structure suitable for the construction of membrane electrode assemblies (MEAs). Results of our study with palladium-cellulose showed that it was capable of catalyzing the generation of hydrogen when incubated with sodium dithionite and generated an electrical current from hydrogen in an MEA containing native cellulose as the polyelectrolyte membrane (PEM). Advantages of using native and metallized bacterial cellulose membranes in an MEA over other PEMs such as Nafion 117 include its higher thermal stability to 130 degrees C and lower gas crossover.  相似文献   

7.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   

8.

Background

Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant.

Results

In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content.

Conclusions

The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low reinforcement loading. The affinity of the dispersant to PLA is important for the ultimate strength and stiffness of the composites.
  相似文献   

9.
This paper reports the development of natural cellulose fibers from hop stems with properties similar to that of hemp. Hop stems are currently considered as byproducts and have limited applications. Since hop belongs to the genus cannabis that also includes hemp, it should be possible to obtain natural cellulose fibers from the stems of hop plants with properties similar to that of hemp. A simple alkaline extraction was used to obtain fibers from the bark of hop stems. Fibers obtained have high cellulose content, low% crystallinity but show good orientation of the cellulose crystals to the fiber axis. The strength and modulus of the fibers are lower but elongation is higher than that of hemp. Based on the properties of the fibers, we expect that the hop stem fibers will be suitable for use in textiles and composites similar to the common cellulose fibers currently in use.  相似文献   

10.
Composites based on phenolic matrices and unmodified and chemically modified sugar cane bagasse and curaua fibers were prepared. The fibers were oxidized by chlorine dioxide, mainly phenolic syringyl and guaiacyl units of the lignin polymer, followed by grafting furfuryl alcohol (FA), which is a chemical obtained from a renewable source. The fibers were widely characterized by chemical composition analysis, crystallinity, UV-vis diffuse reflectance spectroscopy, SEM, DSC, TG, tensile strength, and 13C CP-MAS NMR. The composites were analyzed by SEM, impact strength, and DMA. The SEM images and DMA results showed that the oxidation of sugar cane bagasse fibers followed by reaction with FA favored the fiber/matrix interaction at the interface. The same chemical modification was less effective for curaua fibers, probably due to its lower lignin content, since the reaction considered touches mainly the lignin moiety. The tensile strength results obtained showed that the fibers were partially degraded by the chemical treatment, decreasing then the impact strength of the composites reinforced with them. In the continuity of the present project, efforts has been addressed to the optimization of fiber surface modification, looking for reagents preferably obtained from renewable resources and for chemical modifications that intensify the fiber/matrix interaction without loss of mechanical properties.  相似文献   

11.
A rapid large scale procedure was devised for the purification of desmosine and isodesmosine from ligamentum nuchae elastin. The method makes use of the hydrophilic nature of the desmosines which preferentially absorbs to cellulose fibers in mixtures of organic solvents. Resolution of the isomers was achieved on a polystyrene resin column.  相似文献   

12.
A rapid large scale procedure was devised for the purification of desmosine and isodesmosine from ligamentum nuchae elastin. The method makes use of the hydrophilic nature of the desmosines which preferentially absorbs to cellulose fibers in mixtures of organic solvents. Resolution of the isomers was achieved on a polystyrene resin column.  相似文献   

13.
Bulk cellulose plastic materials with a continuous morphology were successfully processed from cellulose powder through back pressure-equal channel angular pressing (BP-ECAP) at 150 °C without using any additives. The strong shear deformation during the process caused an efficient deformation of cellulose granular and crystalline structures, resulting in effective chain penetration and strong intermolecular interactions throughout the whole material. The mechanical behaviour of the cellulose plastics was comparable to those of polymer/cellulose composites. Ball milling the cellulose powder prior to processing disrupted the crystalline structures thus resulting in more significant modifications of the molecular motions of the cellulose. The outcome of this research provides a potential methodology for manufacturing renewable and biodegradable bulk materials from cellulose-based agricultural waste.  相似文献   

14.
Plant fibers are one of the most important renewable resources, used as raw material in the paper industry, and for various textiles and for composites. Fibers are structural components in timber and an energy-rich component of fuel-wood. For the plant itself, fibers are important in establishing plant architecture, as a source of mechanical support, in defence from herbivory, and in some cases as elements with contractile properties, resembling those of muscles. In addition, fibers may store ergastic carbon resources and water. Here, we review various aspects of fiber development such as initiation, elongation, cell wall formation and multinuclearity, discuss open questions and propose directions for further research. Most of the recent progress in fiber formation biology, especially in cell wall structure and chemistry, emerged from studies of only a few model plants including flax, Populus spp., Eucalyptus spp., Arabidopsis thaliana and hemp. Considering the enormous importance of fibers to humanity, it is surprising how little is known about the biology of fiber formation.  相似文献   

15.
Novel "green" composites were successfully fabricated from recycled cellulose fibers (RCF) and a bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by melt mixing technique. Various weight contents (15%, 30%, and 40%) of the fibers were incorporated in the PHBV matrix. The effect of the fiber weight contents on the thermal, mechanical, and dynamic-mechanical thermal properties of PHBV was investigated and a comparative property analysis was performed with RCF-reinforced polypropylene (PP) composites. The tensile and storage moduli of the PHBV-based composites were improved by 220% and 190%, respectively, by reinforcement with 40 wt % RCF. Halpin-Tsai and Tsai-Pagano's equations were applied for the theoretical modeling of the tensile modulus of PHBV-based composites. The heat deflection temperature (HDT) of the PHBV-based composites was increased from 105 to 131 degrees C, while the coefficient of linear thermal expansion (CLTE) value was reduced by 70% upon reinforcement with 40 wt % RCF. The PHBV-based composites had also shown better tensile and storage moduli and lower CLTE values than PP-based composites. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to study the melting behavior, thermal stability, and morphology of the composite systems, respectively.  相似文献   

16.
In numerous plant cell walls, the cellulose microfibrils are arranged in a helicoidal pattern which has been considered as an analog to a cholesteric order. Here, we report on the spontaneous helicoidal organization which occurs in acellular conditions from aqueous suspensions of cellulose. The cellulosic mucilage of mature seeds of quince (Cydonia oblonga L) was studied both in situ (pre-release mucilage) and after water extraction and in in vitro re-assembly (prolonged high speed ultracentrifugation, further progressive dehydration and embedding in LR White methacrylate or hydrosoluble melamine resin). The cellulosic component was characterized by the use of cellobiohydrolase (CBH1) bound to colloidal gold, and the glucuronic acid residues of the xylan matrix were characterized by the use of cationised gold. Inside the seeds, the pre-release mucilage is mostly helicoidal, with the occurrence of more or less ordered domains, which indicate a fluid organization relevant to an actual liquid crystal state. Cytochemical tests revealed the tight association between cellulose and glucuronoxylans, the latter constituting a charged coat around each microfibril. Following the hydration of the seed, a cellulosic suspension was extracted in which microfibrils were totally dispersed. The progressive dehydration of the suspension gave rise to concentrated viscous drops. Ultrastructural observations revealed the occurrence of multidomain organization, from non-ordered to cholesteric-like regions, revealing that the mucilage is at the same time crystalline and liquid. This constitutes the first demonstration that liquid crystal type assemblies can arise from crystalline and biological cellulose in aqueous suspension. It strengthens the hypothesis that a transient liquid crystal state must occur during the cellulose ordering. The possible morphogenetic role of the glucuronoxylans in the cholesteric organization of the cellulose is discussed.  相似文献   

17.
To exploit the maximum potential of cellulose whiskers (CWs), we report here for the first time the successful fabrication of nanocomposites reinforced with highly oriented CWs in a polymer matrix. The nanocomposites were prepared using polyvinyl alcohol (PVA) and a colloidal suspension of cotton-derived CWs. The macroscopically homogeneous PVA-CW suspensions were extruded into cold methanol to form gel fibers followed by a hot drawing. Compared to the neat PVA fiber, the as-spun fiber containing a small amount of CWs (5 wt % of solid PVA) showed higher drawability, leading to an extremely high orientation of CWs with the matrix PVA. The stress-transfer mechanism, a prime determining factor for high mechanical properties of nanocomposites, was studied by X-ray diffraction. The stress on the incorporated CWs was monitored by applying an in situ nondestructive load to the composite fibers. The applied stress to the whole sample was found to be effectively transferred to the CWs inside the composites, suggesting strong interfacial bonding between the filler and the matrix. Effective stress transfer to the oriented whiskers resulted in outstanding enhancement in mechanical properties of the nanocomposites.  相似文献   

18.
Elastic fibers in the anulus fibrosus of the dog intervertebral disc   总被引:3,自引:0,他引:3  
A light microscopic investigation of the anulus fibrosus in cervical intervertebral discs of the dog was conducted to ascertain the arrangement and distribution of elastic fibers. Elastic fibers were observed in all lamellae of the anulus fibrosus. However, collagenous fibers were the predominant type of connective tissue fiber, and elastic fibers were randomly dispersed among them. Intralamellar (collagenous and elastic) fibers were vertically and obliquely oriented in both superficial and deep lamellae of the anulus fibrosus. All intralamellar fibers were densely and regularly arranged in superficial lamellae, but they were more loosely organized in deep lamellae. A narrow border of interlamellar, elastic fibers was observed between broader, contiguous lamellae in the superficial zone of the anulus fibrosus. Interlamellar elastic fibers wer vertically and obliquely arranged in superficial lamellae; however, they were radially oriented in deep lamellae. The deepest lamella of the anulus fibrosus consisted of a loose, three-dimensional network of intermeshing collagenous and elastic fibers. These observations suggest that elastic fibers are integral components of the articular and shock absorption mechanisms of the anulus fibrosus, and the cervical intervertebral disc of the dog is a suitable model for experimental investigation of the role of elastic fibers in intervertebral disc herniation.  相似文献   

19.
New nanocomposite films were prepared with atactic polypropylene as the matrix and either of three types of cellulose whiskers, with various surface and dispersion characteristics, as the reinforcing phase: aggregated without surface modification, aggregated and grafted with maleated polypropylene or individualized and finely dispersed with a surfactant. Films obtained by solvent casting from toluene were investigated by means of scanning electron microscopy, dynamic mechanical analysis, and tensile testing. In the linear region, the mechanical properties above the glass-rubber transition were found to be drastically enhanced for the nanocomposites as compared to the neat polypropylene matrix. These effects were ascribed to the formation of a rigid network with filler/filler interactions. In addition, interactions between the filler and the matrix as well as the dispersion quality were found to play a major role on the mechanical properties of the composites when investigation of the films was performed in the nonlinear region.  相似文献   

20.
Cellulose nanofibrils of diameter 10–50 nm were obtained from wheat straw using alkali steam explosion coupled with high shear homogenization. High shear results in shearing of the fiber agglomerates resulting in uniformly dispersed nanofibrils. The chemical composition of fibers at different stages were analyzed according to the ASTM standards and showed increase in α-cellulose content and decrease in lignin and hemicellulose. Structural analysis of steam exploded fibers was carried out by Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Thermal stability was higher for cellulose nanofibrils as compared to wheat straw and chemically treated fibers. The fiber diameter distribution was obtained using image analysis software. Characterization of the fibers by AFM, TEM, and SEM showed that fiber diameter decreases with treatment and final nanofibril size was 10–15 nm. FT-IR, XRD, and TGA studies confirmed the removal of hemicellulose and lignin during the chemical treatment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号