首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eccentric gaze in darkness evokes minor centripetal eye drifts in healthy subjects, as cerebellar control sufficiently compensates for the inherent deficiencies of the brainstem gaze-holding network. This behavior is commonly described using a leaky integrator model, which assumes that eye velocity grows linearly with gaze eccentricity. Results from previous studies in patients and healthy subjects suggest caution when this assumption is applied to eye eccentricities larger than 20 degrees. To obtain a detailed characterization of the centripetal gaze-evoked drift, we recorded horizontal eye position in 20 healthy subjects. With their head fixed, they were asked to fixate a flashing dot (50 ms every 2 s)that was quasi-stationary displacing(0.5 deg/s) between ±40 deg horizontally in otherwise complete darkness. Drift velocity was weak at all angles tested. Linearity was assessed by dividing the range of gaze eccentricity in four bins of 20 deg each, and comparing the slopes of a linear function fitted to the horizontal velocity in each bin. The slopes of single subjects for gaze eccentricities of ±0−20 deg were, in median,0.41 times the slopes obtained for gaze eccentricities of ±20−40 deg. By smoothing the individual subjects'' eye velocity as a function of gaze eccentricity, we derived a population of position-velocity curves. We show that a tangent function provides a better fit to the mean of these curves when large eccentricities are considered. This implies that the quasi-linear behavior within the typical ocular motor range is the result of a tuning procedure, which is optimized in the most commonly used range of gaze. We hypothesize that the observed non-linearity at eccentric gaze results from a saturation of the input that each neuron in the integrating network receives from the others. As a consequence, gaze-holding performance declines more rapidly at large eccentricities.  相似文献   

2.

Purpose

Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood.

Methods

Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls.

Results

We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift.

Discussion

This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.  相似文献   

3.
Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs.  相似文献   

4.
It remains unclear whether spontaneous eye movements during visual imagery reflect the mental generation of a visual image (i.e. the arrangement of the component parts of a mental representation). To address this specificity, we recorded eye movements in an imagery task and in a phonological fluency (non-imagery) task, both consisting in naming French towns from long-term memory. Only in the condition of visual imagery the spontaneous eye positions reflected the geographic position of the towns evoked by the subjects. This demonstrates that eye positions closely reflect the mapping of mental images. Advanced analysis of gaze positions using the bi-dimensional regression model confirmed the spatial correlation of gaze and towns’ locations in every single individual in the visual imagery task and in none of the individuals when no imagery accompanied memory retrieval. In addition, the evolution of the bi-dimensional regression’s coefficient of determination revealed, in each individual, a process of generating several iterative series of a limited number of towns mapped with the same spatial distortion, despite different individual order of towns’ evocation and different individual mappings. Such consistency across subjects revealed by gaze (the mind’s eye) gives empirical support to theories postulating that visual imagery, like visual sampling, is an iterative fragmented processing.  相似文献   

5.
We investigated coordinated movements between the eyes and head (“eye-head coordination”) in relation to vision for action. Several studies have measured eye and head movements during a single gaze shift, focusing on the mechanisms of motor control during eye-head coordination. However, in everyday life, gaze shifts occur sequentially and are accompanied by movements of the head and body. Under such conditions, visual cognitive processing influences eye movements and might also influence eye-head coordination because sequential gaze shifts include cycles of visual processing (fixation) and data acquisition (gaze shifts). In the present study, we examined how the eyes and head move in coordination during visual search in a large visual field. Subjects moved their eyes, head, and body without restriction inside a 360° visual display system. We found patterns of eye-head coordination that differed those observed in single gaze-shift studies. First, we frequently observed multiple saccades during one continuous head movement, and the contribution of head movement to gaze shifts increased as the number of saccades increased. This relationship between head movements and sequential gaze shifts suggests eye-head coordination over several saccade-fixation sequences; this could be related to cognitive processing because saccade-fixation cycles are the result of visual cognitive processing. Second, distribution bias of eye position during gaze fixation was highly correlated with head orientation. The distribution peak of eye position was biased in the same direction as head orientation. This influence of head orientation suggests that eye-head coordination is involved in gaze fixation, when the visual system processes retinal information. This further supports the role of eye-head coordination in visual cognitive processing.  相似文献   

6.
Whether migrating birds compensate for wind drift or not is a fundamental question in bird migration research. The procedures to demonstrate and quantitatively estimate wind drift or compensation are fraught with difficulties and pitfalls. In this paper, we evaluate four methods that have been used in several studies over the past decades. We evaluate the methods by analysing a model migratory movement with a realistic scatter in flight directions, for the ideal cases of full drift and complete compensation. Results obtained with the different methods are then compared with the "true behaviour" of the model movement, illustrating that spurious patterns of drift and compensation arise in some cases. We also illustrate and evaluate the different methods of estimating drift for a real case, based on tracking radar measurements of bird migration in relation to winds. Calculating the linear regression of mean geographic track (resulting flight direction) and heading directions (directions of the birds' body axis) of a migratory movement under different wind conditions in relation to the angle alpha (the angle between mean track and heading) always provides robust and reliable results. Comparing mean flight directions between occasions with winds from the left and right of the mean flight direction of the whole migratory movement also always provides expected and correct measures of drift. In contrast, regressions of individual flight directions in relation to alpha (the angle between track and heading for the specific individuals or flocks) are liable to produce biased and spurious results, overestimating compensation/overcompensation if following winds dominate in the analysis and overestimating drift/overdrift if opposed winds are dominating. Comparing mean directions for cases with winds from the left and right in relation to individual flight directions also gives biased and spurious results unless there is full variation in wind directions or an equal distribution of crosswinds from left and right. The results of the methodological evaluation and the analysis of the real case indicate that some earlier analyses of wind drift may have to be re-evaluated.  相似文献   

7.
8.
Choi WY  Guitton D 《Neuron》2006,50(3):491-505
A prominent hypothesis in motor control is that endpoint errors are minimized because motor commands are updated in real time via internal feedback loops. We investigated in monkey whether orienting saccadic gaze shifts made in the dark with coordinated eye-head movements are controlled by feedback. We recorded from superior colliculus fixation neurons (SCFNs) that fired tonically during fixation and were silent during gaze shifts. When we briefly (相似文献   

9.
Our eyes move continuously. Even when we attempt to fix our gaze, we produce “fixational” eye movements including microsaccades, drift and tremor. The potential role of microsaccades versus drifts in the control of eye position has been debated for decades and remains in question today. Here we set out to determine the corrective functions of microsaccades and drifts on gaze-position errors due to blinks in non-human primates (Macaca mulatta) and humans. Our results show that blinks contribute to the instability of gaze during fixation, and that microsaccades, but not drifts, correct fixation errors introduced by blinks. These findings provide new insights about eye position control during fixation, and indicate a more general role of microsaccades in fixation correction than thought previously.  相似文献   

10.
Subjective observations made during routine examination of eye movement functions (orthoptic status) reveal that very slow, smooth-pursuit eye movements in cancer patients are irregular. To objectively measure such movements, a video-based system was built to allow analysis of very slow, smooth-pursuit eye movements (1.8 degrees /s). Analysis involves quantification of drift and jerk-like gaze movements that cause deviations in gaze direction from the predicted trajectory. Gaze deviations observed in cancer patients are compared to those for the normal population. Our results show that deviations are more important in cancer patients than in the normal population. The difference is statistically significant (p<0.05) for deviations ranging between 0.75 degrees and 1.75 degrees . In the future, the system may possibly be used in the diagnosis of cancer.  相似文献   

11.
In ball sports, it is usually acknowledged that expert athletes track the ball more accurately than novices. However, there is also evidence that keeping the eyes on the ball is not always necessary for interception. Here we aimed at gaining new insights on the extent to which ocular pursuit performance is related to catching performance. To this end, we analyzed eye and head movements of nine subjects catching a ball projected by an actuated launching apparatus. Four different ball flight durations and two different ball arrival heights were tested and the quality of ocular pursuit was characterized by means of several timing and accuracy parameters. Catching performance differed across subjects and depended on ball flight characteristics. All subjects showed a similar sequence of eye movement events and a similar modulation of the timing of these events in relation to the characteristics of the ball trajectory. On a trial-by-trial basis there was a significant relationship only between pursuit duration and catching performance, confirming that keeping the eyes on the ball longer increases catching success probability. Ocular pursuit parameters values and their dependence on flight conditions as well as the eye and head contributions to gaze shift differed across subjects. However, the observed average individual ocular behavior and the eye-head coordination patterns were not directly related to the individual catching performance. These results suggest that several oculomotor strategies may be used to gather information on ball motion, and that factors unrelated to eye movements may underlie the observed differences in interceptive performance.  相似文献   

12.
Tailwind drift compensation serves to maximize a migrant's flight distance on a given amount of energy, and crosswind drift compensation serves to hold a course true and minimize the distance flown. With full or part compensation, airspeeds are predicted to increase with greater crosswind drift. To test whether migrating dragonflies compensated for wind drift, I measured the velocity and heading of Pantala hymenaea and P. flavescens in natural flight over a lake and the ambient wind speed and direction. P. hymenaea flew north-easterly (58°), whereas P. flavescens flew significantly more east–north easterly (74°) throughout the day. Pantala spp. demonstrated part compensation for changes in crosswind drift within individuals (mean compensation = 54%, P = 0.0000), evidence for use of a ground reference to correct for drift when flying over water. Among individuals, P. flavescens compensated for crosswind drift. P. hymenaea overcompensated and then drifted downwind on one morning and compensated for crosswind drift on the next. As predicted from optimal migration theory, airspeed (5.0 m/s for both species with no tailwind) decreased with tailwind velocity both among individuals (data for both species pooled [n = 19], P < 0.0001) and within each individual as it crossed the lake (P = 0.0016).  相似文献   

13.
Rapid orientating movements of the eyes are believed to be controlled ballistically. The mechanism underlying this control is thought to involve a comparison between the desired displacement of the eye and an estimate of its actual position (obtained from the integration of the eye velocity signal). This study shows, however, that under certain circumstances fast gaze movements may be controlled quite differently and may involve mechanisms which use visual information to guide movements prospectively. Subjects were required to make large gaze shifts in yaw towards a target whose location and motion were unknown prior to movement onset. Six of those tested demonstrated remarkable accuracy when making gaze shifts towards a target that appeared during their ongoing movement. In fact their level of accuracy was not significantly different from that shown when they performed a 'remembered' gaze shift to a known stationary target (F3,15 = 0.15, p > 0.05). The lack of a stereotypical relationship between the skew of the gaze velocity profile and movement duration indicates that on-line modifications were being made. It is suggested that a fast route from the retina to the superior colliculus could account for this behaviour and that models of oculomotor control need to be updated.  相似文献   

14.
Usually, to shift the gaze, our will is needed, which the brain realizes by giving an order to the corresponding eye muscles. However, under some conditions, the eye movement and the shift of the gaze to perspective can be accomplished by non-forced methods, without any active interference of our consciousness.  相似文献   

15.
BACKGROUND: A non-invasive model has been developed to estimate gaze direction and relative pupil diameter, in minimally restrained rhesus monkeys, to investigate the effects of low doses of ocularly administered cholinergic compounds on visual performance. METHODS: Animals were trained to co-operate with a novel device, which enabled eye movements to be recorded using modified human eye-tracking equipment, and to perform a task which determined visual threshold contrast. Responses were made by gaze transfer under twilight conditions. 4% w/v pilocarpine nitrate was studied to demonstrate the suitability of the model. RESULTS: Pilocarpine induced marked miosis for >3 h which was accompanied by a decrement in task performance. CONCLUSIONS: The method obviates the need for invasive surgery and, as the position of point of gaze can be approximately defined, the approach may have utility in other areas of research involving non-human primates.  相似文献   

16.
In humans and some other species perceptual decision-making is complemented by the ability to make confidence judgements about the certainty of sensory evidence. While both forms of decision process have been studied empirically, the precise relationship between them remains poorly understood. We performed an experiment that combined a perceptual decision-making task (identifying the category of a faint visual stimulus) with a confidence-judgement task (wagering on the accuracy of each perceptual decision). The visual stimulation paradigm required steady fixation, so we used eye-tracking to control for stray eye movements. Our data analyses revealed an unexpected and counterintuitive interaction between the steadiness of fixation (prior to and during stimulation), perceptual decision making, and post-decision wagering: greater variability in gaze direction during fixation was associated with significantly increased visual-perceptual sensitivity, but significantly decreased reliability of confidence judgements. The latter effect could not be explained by a simple change in overall confidence (i.e. a criterion artifact), but rather was tied to a change in the degree to which high wagers predicted correct decisions (i.e. the sensitivity of the confidence judgement). We found no evidence of a differential change in pupil diameter that could account for the effect and thus our results are consistent with fixational eye movements being the relevant covariate. However, we note that small changes in pupil diameter can sometimes cause artefactual fluctuations in measured gaze direction and this possibility could not be fully ruled out. In either case, our results suggest that perceptual decisions and confidence judgements can be processed independently and point toward a new avenue of research into the relationship between them.  相似文献   

17.
Understanding the control of eye growth may lead to the prevention of nearsightedness (myopia). Chicks develop refractive errors in response to defocusing lenses by changing the rate of eye elongation. Changes in optical image quality and the optical signal in lens compensation are not understood. Monochromatic ocular aberrations were measured in 16 chicks that unilaterally developed myopia in response to unilateral goggles with −15D lenses and in 6 chicks developing naturally. There is no significant difference in higher-order root mean square aberrations (RMSA) between control eyes of the goggled birds and eyes of naturally developing chicks. Higher-order RMSA for a constant pupil size exponentially decreases in the chick eye with age more slowly than defocus. In the presence of a defocusing lens, the exponential decrease begins after day 2. In goggled eyes, asymmetric aberrations initially increase significantly, followed by an exponential decrease. Higher-order RMSA is significantly higher in goggled eyes than in controls. Equivalent blur, a new measure of image quality that accounts for increasing pupil size with age, exponentially decreases with age. In goggled eyes, this decrease also occurs after day 2. The fine optical structure, reflected in higher-order aberrations, may be important in understanding normal development and the development of myopia.  相似文献   

18.
Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio telemetry, we analysed the effect of changing winds on the variation of the track direction of individual birds. We studied adults and juveniles of two raptor species, osprey Pandion haliaetus and honey buzzard Pernis apivorus, on autumn migration between North Europe and Africa, and demonstrate an important difference between the age categories of both species in the extent of wind drift. For juveniles, side- and following-wind components affected the rates of movement perpendicular to and along the mean direction, respectively, to a similar degree, suggesting full wind drift. By contrast, for adults the rate of crosswind displacement was significantly smaller than the effect of wind on forward movement, showing much reduced wind drift (29%). This indicates that adults have acquired a more sophisticated orientation system, permitting detection of and compensation for wind drift, than juveniles. These drift effects are likely to reduce the ability of juveniles to locate species-specific wintering areas in case of rapid climatic wind change.  相似文献   

19.

Purpose

To investigate the effect of lateral decubitus position (LDP) on nocturnal intraocular pressure (IOP) and the effect of LDP on 24-hour habitual IOP pattern in healthy subjects.

Methods

Intraocular pressure was measured every 2-hours using an Accupen Applanation Tonometer (Accutome, USA). During the diurnal period (7:30 am, 9:30 am, 11:30 am, 1:30 pm, 3:30 pm, 5:30 pm, 7:30 pm, and 9:30 pm), IOP was measured in the sitting position under bright light (500–1000 lux) after the subjects had been seated for 5 min. The nocturnal IOP was measured in the supine position, right LDP, and left LDP, with randomized sequences, under dim light (<10 lux) at 11:30 pm, 1:30 am, 3:30 am, and 5:30 am. The subjects were awakened and maintained each position for 5 min before the measurement. The 24-hour habitual IOP patterns were obtained according to the nocturnal position (supine, right LDP and left LDP) for either eye. P<0.05 was considered to be significant.

Results

Nineteen healthy subjects were included with a mean age of 51.3±5.8 years. During the nocturnal period, a significant IOP difference was found between the dependent eye (the eye on the lower side) of LDP and the supine position, but not for all the nocturnal time points. Over a 24-hour period, the effect of LDP on habitual IOP pattern was not statistically significant, although the mean nocturnal IOP and the diurnal-nocturnal IOP change for the right and the left eye in the LDP pattern was slightly higher than that in the sitting-supine pattern.

Conclusion

Significant nocturnal IOP differences existed between the dependent eye and the supine, but did not occur consistently for all time points. Over a 24-hour period, the effect of LDP on habitual IOP pattern was not statistically significant in healthy subjects.  相似文献   

20.
Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号