首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs) including bone marrow stem cells (BMSCs), dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro.

Methodology/Principal Findings

The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4–7 and 6–9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin.

Conclusion/Significance

This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.  相似文献   

2.
目的:阐明病理性周期性张应力诱导人牙周膜细胞凋亡的分子机制。方法:人牙周膜细胞取自健康前磨牙,经过3?5代传代,细胞受到20%牵张力,时间为6 h或24 h,通过用膜联蛋白异硫氰酸荧光素(V-FITC)和碘化丙啶(PI)结合流式细胞仪检测细胞凋亡,用Western Blot法研究caspase-3,cleaved caspase-3,116 kDa PARP-1和85 k Da PARP-1蛋白的表达变化。结果:人PDL细胞受到病理性周期性张应力时存在凋亡,并以一种时间依赖的方式增加。受到病理性周期性张应力后裂解的caspase-3和PARP蛋白随着时间增加,然而抑制caspase-3的活性却可以抑制细胞的凋亡,但并不能抑制由其他通路导致的凋亡。结论:病理性周期性张应力通过caspase-3/PARP途径诱导人牙周膜细胞的凋亡。  相似文献   

3.
目的:探讨658 nm低能量激光照射对人牙周膜细胞增殖、碱性磷酸酶活性及纤维连接蛋白合成的影响.方法:改良组织块法体外培养人牙周膜细胞.通过658 nm激光照射人牙周膜细胞,观察能量密度为1.86 J/cm2和3.72 J/cm2激光照射后不同时间点细胞增殖效应、碱性磷酸酶活性和纤维连接蛋白的变化.结果:1.86 J/cm2和3.72 J/cm2能量密度的激光照射人牙周膜细胞,可显著促进细胞增殖效应.3.72 J/cm2能量密度的激光照射可提高人牙周膜细胞碱性磷酸酶活性;能量密度为1.86 J/cm2的激光照射人牙周膜细胞72 h后,细胞中纤维连接蛋白分泌量增加.结论:658 nm低剂量激光照射可促进人牙周膜细胞增殖;适量的低剂量激光照射人牙周膜细胞可促进其碱性磷酸酶活性及纤维连接蛋白的分泌.  相似文献   

4.

Background

We previously demonstrated that 25-hydroxyvitamin D3 concentrations in gingival crevicular fluid are 300 times higher than those in the plasma of patients with aggressive periodontitis. Here we explored whether 25-hydroxyvitamin D3 can be synthesized by periodontal soft tissue cells. We also investigated which of the two main kinds of hydroxylases, CYP27A1 and CYP2R1, is the key 25-hydroxylase in periodontal soft tissue cells.

Methodology/Principal Findings

Primary cultures of human gingival fibroblasts and periodontal ligament cells from 5 individual donors were established. CYP27A1 mRNA, CYP2R1 mRNA and CYP27A1 protein were detected in human gingival fibroblasts and periodontal ligament cells, whereas CYP2R1 protein was not. After incubation with the 25-hydroxylase substrate vitamin D3, human gingival fibroblasts and periodontal ligament cells generated detectable 25-hydroxyvitamin D3 that resulted in the production of 1α,25-dihydroxyvitamin D3. Specific knockdown of CYP27A1 in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 production. Knockdown of CYP2R1 did not significantly influence 25-hydroxyvitamin D3 synthesis. Sodium butyrate did not influence significantly CYP27A1 mRNA expression; however, interleukin-1β and Porphyromonas gingivalis lipopolysaccharide strongly induced CYP27A1 mRNA expression in human gingival fibroblasts and periodontal ligament cells.

Conclusions

The activity of 25-hydroxylase was verified in human gingival fibroblasts and periodontal ligament cells, and CYP27A1 was identified as the key 25-hydroxylase in these cells.  相似文献   

5.
目的:在体外条件下,探讨周期张应力作用对人牙周膜成纤维细胞凋亡的影响及PI3k/Akt信号通路在细胞凋亡中的作用。方法:应用多通道细胞牵张应力加载系统,以HPDLFs(人牙周膜成纤维细胞)为对象构建细胞体外培养-力学刺激模型,对照组为0h,0h+LY294002,加力组1 h,6 h,12 h,12 h+LY294002,24 h,力值定为15%,频率为1/6HZ,即10循环/分钟。采用Hoechst33258染色检测细胞形态和凋亡情况,应用RT-PCR技术检测Bcl-2、Bax的表达情况。结果:Hoechst 33258细胞染色结果显示,对照组的细胞核为弥散均匀的圆形或椭圆形荧光,实验组的细胞核或细胞质内出现可见致密浓染的颗粒、新月体或环状荧,RT-PCR结果显示Bcl-2与Bax基因表达均呈现时间依赖性。12 h HPDLFs的细胞凋亡数达最高峰值(P<0.01),24 h细胞凋亡峰值开始下降,但仍高于未加力组(P<0.05)。与对照组相比加入LY294002后,Bcl-2/Bax比值较加载相同时间的加力组小(P<0.05)。结论:一定的时间范围内,周期性张应力能促进HPDLFs凋亡;随着时间的延长(24h),细胞凋亡受到抑制;PI3K/Akt信号传导通路可能参与在周期性张应力介导的HPDLFs的凋亡。  相似文献   

6.
7.
8.
9.
Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10–20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs’ host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2-AG might play an important role in the modulation of periodontal inflammation.  相似文献   

10.
11.
人参皂苷Rg1 (GS Rg1) 是人参的主要药理活性成分. GS Rg1有刺激造血干细胞的形成和促进骨髓间充质干细胞增殖和分化的作用.而人牙周膜干细胞(human periodontal ligament stem cells, hPDLSCs)具有自我更新和多向分化的干细胞特性.但目前关于GS Rg1能否促进牙周膜干细胞增殖和分化的研究尚不多见.本研究证明,1×10-5 mol/L GS Rg1作用于hPDLSCs后,能明显促进牙周膜干细胞的增殖与分化.MTT检测细胞增殖显示,培养液中加入了GS Rg1实验组在第2,3,4,5 d增殖情况明显高于对照组,提示GS Rg1成分促进了牙周膜干细胞的增殖. 检测ALP表达量,RUNX2,Collagen I,OPN,OCN表达水平,加药实验组表达水平均高于未加药对照组,它们的表达量的增高提示成骨分化的增强. 牙周膜干细胞与纳米羟基磷灰石支架结合的电镜图片及其支架植入小鼠体内后的免疫组化检测显示,含有GS Rg1成分的细胞支架能促进形成更多的骨样组织.因此,GS Rg1能促进hPDLSCs体内体外的增殖及骨向分化,并在替代传统生长因子应用于牙周组织工程方面有较好前景.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号