首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sepharose 4B-bound bovine anhydrochymotrypsin (AnhCT), a catalytically inactive form of chymotrypsin, was shown to be effective for retaining active alpha-1-protease inhibitor (alpha-1-PI, also alpha-1-antitrypsin) from human plasma, while showing no measurable affinity for oxidized or protease complexed alpha-1-PI, or for most other plasma proteins. alpha-1-PI eluted from this resin with 0.1 M chymostatin retained full activity against trypsin, chymotrypsin, and elastase. In addition to alpha-1-PI, AnhCT-Sepharose binds a limited number of other plasma proteins. Using monospecific antisera to plasma protease inhibitors, one of these proteins was identified as inter-alpha-trypsin inhibitor, and it was recoverable in active form. Therefore, an AnhCT-Sepharose 4B resin has been demonstrated to be of value for isolating active forms of alpha-1-PI from solutions, and may also be useful for the isolation of inter-alpha-trypsin inhibitor.  相似文献   

2.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   

3.
Three extracellular proteases produced by Legionella pneumophila during growth in liquid medium were examined for their effects on human alpha-1-antitrypsin (alpha-1-AT). One of these proteases, tissue-destructive protease (TDP) destroyed completely the trypsin-inhibitory capacity of alpha-1-AT at protease: inhibitor molar ratios down to 0.002:1. After inactivation by TDP, the Mr of alpha-1-AT was reduced by 5000 in SDS-PAGE. This suggested that inactivation entailed only limited cleavage.  相似文献   

4.
Human plasma alpha-1-proteinase inhibitor (α1-antitrypsin) has been re-isolated from its complex with porcine trypsin. The re-isolated protein (α1-PI*) was found to be non-inhibitory and 8,000 lower in molecular weight than the native inhibitor. Sequence analysis of α1-PI* showed that an amino terminal peptide had been lost, apparently the result of cleavage at a Lys-Thr bond. These data indicate that limited proteolysis is the first step in the inhibitory mechanism.  相似文献   

5.
Arginine can be post-translationally incorporated from arginyl-tRNA into the N-terminus of soluble acceptor proteins in a reaction catalyzed by arginyl-tRNA protein transferase. In the present study, several soluble rat brain proteins that accepted arginine were identified after arginine incorporation by two dimensional electrophoresis and mass spectrometry. They were identified as: contrapsin-like protease inhibitor-3, α-1-antitrypsin, apolipoprotein E, hemopexin, calreticulin and apolipoprotein A-I. All of these proteins shared a signal sequence for the translocation of proteins across endoplasmic reticulum membranes. After losing the signal peptide, these proteins expose amino acids described as compatible for post-translational arginylation. Although the enzymatic system involved in arginylation is confined mainly in cytosol and nucleus, all the substrates described herein enter to the exocytic pathway co-translationally. Therefore, we postulate that the substrates for arginylation could reach the cytosol by retro-translocation and be then arginylated.  相似文献   

6.
Mesotrypsin, an inhibitor-resistant human trypsin isoform, does not activate or degrade pancreatic protease zymogens at a significant rate. These observations led to the proposal that mesotrypsin is a defective digestive protease on protein substrates. Surprisingly, the studies reported here with alpha1-antitrypsin (alpha1AT) revealed that, even though mesotrypsin was completely resistant to this serpin-type inhibitor, it selectively cleaved the Lys10-Thr11 peptide bond at the N-terminus. Analyzing a library of alpha1AT mutants in which Thr11 was mutated to various amino acids, we found that mesotrypsin hydrolyzed lysyl peptide bonds containing Thr or Ser at the P1' position with relatively high specificity (kcat/KM approximately 10(5) m(-1) x s(-1)). Compared with Thr or Ser, P1' Gly or Met inhibited cleavage 13- and 25-fold, respectively, whereas P1' Asn, Asp, Ile, Phe or Tyr resulted in 100-200-fold diminished rates of proteolysis, and Pro abolished cleavage completely. Consistent with the Ser/Thr P1' preference, mesotrypsin cleaved the Arg358-Ser359 reactive-site peptide bond of alpha1AT Pittsburgh and was rapidly inactivated by the serpin mechanism (ka approximately 10(6) m(-1) s(-1)). Taken together, the results indicate that mesotrypsin is not a defective protease on polypeptide substrates in general, but exhibits a relatively high specificity for Lys/Arg-Ser/Thr peptide bonds. This restricted, thrombin-like subsite specificity explains why mesotrypsin cannot activate pancreatic zymogens, but might activate certain proteinase-activated receptors. The observations also identify alpha1AT Pittsburgh as an effective mesotrypsin inhibitor and the serpin mechanism as a viable stratagem to overcome the inhibitor-resistance of mesotrypsin.  相似文献   

7.
8.
The primary structure of human C1 inhibitor was determined by peptide and DNA sequencing. The single-chain polypeptide moiety of the intact inhibitor is 478 residues (52,869 Da), accounting for only 51% of the apparent molecular mass of the circulating protein (104,000 Da). The positions of six glucosamine-based and five galactosamine-based oligosaccharides were determined. Another nine threonine residues are probably also glycosylated. Most of the carbohydrate prosthetic groups (probably 17) are located at the amino-terminal end (residues 1-120) of the protein and are particularly concentrated in a region where the tetrapeptide sequence Glx-Pro-Thr-Thr, and variants thereof, is repeated 7 times. No phosphate was detected in C1 inhibitor. Two disulfide bridges connect cysteine-101 to cysteine-406 and cysteine-108 to cysteine-183. Comparison of the amino acid and cDNA sequences indicates that secretion is mediated by a 22-residue signal peptide and that further proteolytic processing does not occur. C1 inhibitor is a member of the large serine protease inhibitor (serpin) gene family. The homology concerns residues 120 through the C-terminus. The sequence was compared with those of nine other serpins, and conserved and nonconserved regions correlated with elements in the tertiary structure of alpha 1-antitrypsin. The C1 inhibitor gene maps to chromosome 11, p11.2-q13. C1 inhibitor genes of patients from four hereditary angioneurotic edema kindreds do not have obvious deletions or rearrangements in the C1 inhibitor locus. A HgiAI DNA polymorphism, identified following the observation of sequence variants, will be useful as a linkage marker in studies of mutant C1 inhibitor genes.  相似文献   

9.

Background  

HTRA3 is a recently identified member of the mammalian serine protease family HTRA (high temperature requirement factor A). In both the rodent and the human HTRA3 is transcribed into two mRNA species (long and short) through alternative splicing. We have previously shown that HTRA3 is expressed in the mature rat ovary and may be involved in folliculogenesis and luteinisation. HTRA3 is also upregulated during mouse and human placental development. The current study investigated whether HTRA3 is also localised in the primate ovary (rhesus monkey n = 7). In addition, we examined the non-pregnant rhesus monkey endometrium (n = 4) and maternal-fetal interface during early pregnancy (n = 5) to further investigate expression of HTRA3 in primate endometrium and placentation.  相似文献   

10.
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed.  相似文献   

11.
Alzheimer's disease (AD) is the most common cause of dementia of late life. To enhance our understanding of AD proteome, the serum proteins were analyzed using two-dimensional gel electrophoresis (2DE) combined with nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (nano-HPLC-ESI-MS/MS) followed by peptide fragmentation patterning. In this study, six protein spots with differential expression were identified. Five up-regulated proteins were identified as actin, apolipoprotein A-IV (Apo A-IV), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), alpha-1-antitrypsin (AAT), and antithrombin-III (AT-III); one protein, activity-dependent neuroprotector homeobox protein (ADNP) was down-regulated in AD patients. These proteins with differential expression in the serum may serve as potential indicators of AD. Our results suggested that ADNP may play an important role in slowing the progression of clinical symptoms of AD.  相似文献   

12.

Background

Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown.

Methodology/Principal Findings

Using an immunoprecipitation and mass spectrometry based approach, we identified p170 as alpha-2-macroglobuline-like-1, a broad range protease inhibitor expressed in stratified epithelia and other tissues damaged in the PNP disease course. We demonstrate that 10 PNP sera recognize alpha-2-macroglobuline-like-1 (A2ML1), while none of the control sera obtained from patients with bullous pemphigoid, pemphigus vulgaris, pemphigus foliaceus and normal subjects does.

Conclusions/Significance

Our study unravels a broad range protease inhibitor as a new class of target antigens in a paraneoplastic autoimmune multiorgan syndrome and opens a new challenging investigation avenue for a better understanding of PNP pathogenesis.  相似文献   

13.
Gupta VK  Gowda LR 《Biochimie》2008,90(5):749-761
Alpha-1-proteinase (alpha-1-PI) inhibitor is the major circulating serine protease inhibitor in humans. The porcine elastase and trypsin inhibitory activity of human and ovine alpha-1-PI is activated several fold in the presence of anti-coagulant heparin. The activation is allosteric and appears to be characterized by two steps of binding; a weak followed by a strong binding. The Kass for ovine and human alpha-1-PI inhibition of porcine pancreatic elastase was increased approximately 45 fold and 38 fold respectively. Using a combinatorial approach of multiple sequence alignment, surface topology, chemical modification and tryptic peptide mapping to identify the sequence of the heparin bound peptide; we demonstrate that heparin binds to the lysyl rich region of the F-helix of alpha-1-PI, which differs from that of heparin-antithrombin (AT) interactions. Molecular docking prediction using the MEDock algorithm approximates the three positively charged lysines (K154, K155, K174) of human alpha-1-PI in this interaction. This heparin alpha-1-PI interaction has been exploited to develop an affinity purification method, which can be used universally to obtain homogenous preparations of mammalian alpha-1-PIs useful for augmentation therapy. Collectively, all these findings imply that alpha-1-PI has a major role in regulating extra cellular protease activity and the physiological activator is heparin.  相似文献   

14.
Dipeptidyl peptidase IV (DP-IV) is a cell surface serine dipeptidase that is involved in the regulation of the incretin hormones, glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). There is accumulating evidence that other members of the glucagon family of peptides are also endogenous substrates for this enzyme. To identify candidate substrates for DP-IV, a mass spectrometry-based protease assay was developed that measures cleavage efficiencies (kcat/Km) of polypeptides in a mixture, using only a few picomoles of each substrate and physiological amounts of enzyme in a single kinetic experiment. Oxyntomodulin and the growth hormone-(1-43) fragment were identified as new candidate in vivo substrates. Pituitary adenylate cyclase-activating polypeptide-(1-38) (PACAP38), a critical mediator of lipid and carbohydrate metabolism, was also determined to be efficiently processed by DP-IV in vitro. The catabolism of exogenously administered PACAP38 in wild type and DP-IV-deficient C57Bl/6 mice was monitored by tandem mass spectrometry. Animals lacking DP-IV exhibited a significantly slower clearance of the circulating peptide with virtually complete suppression of the inactive DP-IV metabolite, PACAP-(3-38). These in vivo results suggest that DP-IV plays a major role in the degradation of circulating PACAP38.  相似文献   

15.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-associated Kunitz-type serine proteinase inhibitor that was initially identified as a potent inhibitor of hepatocyte growth factor activator. HAI-1 is also a cognate inhibitor of matriptase, a membrane-associated serine proteinase. HAI-1 is expressed predominantly in epithelial cells in the human body. Its mRNA is also abundant in human placenta, with HAI-1 specifically expressed by villous cytotrophoblasts. In order to address the precise roles of HAI-1 in vivo, we generated HAI-1 mutant mice by homozygous recombination. Heterozygous HAI-1+/- mice underwent normal organ development. However, homozygous HAI-1-/- mice experienced embryonic lethality which became evident at embryonic day 10.5 postcoitum (E10.5). As early as E9.5, HAI-1-/- embryos showed growth retardation that did not reflect impaired cell proliferation but resulted instead from failed placental development and function. Histological analysis revealed severely impaired formation of the labyrinth layer, in contrast all other placental layers, such as the spongiotrophoblast layer and giant cell layer, which were formed. Our results indicate that mouse HAI-1 is essential for branching morphogenesis in the chorioallantoic placenta and lack of HAI-1 function may result in placental failure.  相似文献   

16.
HTRA3 is a newly identified serine peptidase of the mammalian HTRA (high-temperature requirement factor A) family, that is upregulated dramatically during mouse placental development. The current study determined whether HTRA3 was involved in human placentation. During the menstrual cycle, HTRA3 was expressed primarily in the endometrial glands, being significantly upregulated toward the mid- to late secretory phases; prominent expression in the stroma detected only in the decidual cells in the late secretory phase. Thus, overall endometrial HTRA3 expression was highest in the late secretory phase, when the endometrium is prepared for maternal-trophoblast interaction. During the first trimester of pregnancy, both glandular and decidual HTRA3 expression increased further with the decidual upregulation being highly significant. The strong link between HTRA3 expression and endometrial stromal cell decidualization was further established in an in vitro model using primary endometrial stromal cells. HTRA3 was also expressed by certain trophoblast subtypes in the first-trimester placenta: strongly in the villous syncytiotrophoblast, trophoblast shell, and endovascular trophoblast and weakly in the distal portion of the trophoblast cell columns but not in villous cytotrophoblast, the proximal region of the cell columns, or interstitial trophoblast. Upregulation of HTRA3 expression in association with placental development was revealed by a significant elevation of this protein in the maternal serum during the first trimester. We thus propose that HTRA3 is a previously unrecognized factor closely associated with and potentially important for human placentation. This study established crucial groundwork for future investigations toward establishing the physiological roles of HTRA3 in human placentation.  相似文献   

17.
The aspartyl protease BACE1 cleaves the amyloid precursor protein and the sialyltransferase ST6Gal I and is important in the pathogenesis of Alzheimer's disease. The normal function of BACE1 and additional physiological substrates have not been identified. Here we show that BACE1 acts on the P-selectin glycoprotein ligand 1 (PSGL-1), which mediates leukocyte adhesion in inflammatory reactions. In human monocytic U937 and human embryonic kidney 293 cells expressing endogenous or transfected BACE1, PSGL-1 was cleaved by BACE1 to generate a soluble ectodomain and a C-terminal transmembrane fragment. No evidence of the cleavage fragment was seen in primary cells derived from mice deficient in BACE1. By using deletion constructs and enzymatic deglycosylation of the C-terminal PSGL-1 fragments, the cleavage site in PSGL-1 was mapped to the juxtamembrane region within the ectodomain. In an in vitro assay BACE1 catalyzed the formation of the PSGL-1 products seen in vivo. The cleavage occurred at a Leu-Ser peptide bond as identified by mass spectrometry using a synthetic peptide. We conclude that PSGL-1 is an additional substrate for BACE1.  相似文献   

18.
[4-14C + 7-D0.44]Androstenedione and [4-14C + 7β-D0.42]testosterone were prepared. When they were examined by mass spectrometry, the above proportion of deuterium and protium forms resulted in mass spectra in which the molecular ion (M+) and (M+ + 1) were of equal intensity. Fragment ions that contained deuterium were also twins. When doubly-labeled androstenedione and testosterone were used as substrates for the aromatizing enzymes of human placenta, the mass spectra of metabolites were characteristically labeled and thus readily distinguished from unlabeled material. Metabolites were quantitated by counting 14C. 17β,19-Dihydroxyandrost-4-en-3-one, 19-hydroxyandrost-4-ene-3,17-dione, 17β-hydroxy-3-oxoandrost-4-en-19-al, 3,17-dioxoandrost-4-en-19-al, estradiol-17β, and estrone were isolated, identified by their mass spectra, and quantitated following incubation of doubly-labeled androstenedione and testosterone with human placental microsomes.  相似文献   

19.
To determine the potential role of the placenta in transmission of human immunodeficiency virus (HIV) from mother to fetus, the ability of human placental tissue to support HIV type 1 (HIV-1) infection was examined. HIV-1-seronegative first-trimester placentas were maintained in culture and infected with HIV-1. Virus production, measured by HIV-1 antigen release into the supernatant, and HIV-1 DNA, identified by polymerase chain reaction, were detected for at least 12 days postinfection. Western immunoblot analysis showed Gag proteins, precursor p55, and cleavage products p24 and p17 in HIV-1-infected tissues. Double labeling of placental villi with antibodies to CD4 and placental trophoblast-specific alkaline phosphatase indicated that trophoblasts express CD4 antigen. Additionally, immunostaining of HIV-1-infected tissues with anti-p24 antibodies demonstrated HIV-1 protein expression in placental trophoblasts. Evaluation of human chorionic gonadotropin and progesterone production by the placental cultures indicated that there was a 90% decrease in human chorionic gonadotropin and a 70% decrease in progesterone production in HIV-1-infected cultures in comparison with controls. These data demonstrate that trophoblastic cells of human placenta tissue express CD4 and are susceptible to HIV-1 infection; also, placental endocrine function is decreased by HIV-1 infection. Thus, the placenta may serve as a reservoir of HIV-1 infection during pregnancy contributing to infection of the fetus, and decreased placental hormone production may result in impaired fetal development.  相似文献   

20.
HTRA2/OMI is an ATP-independent serine protease located in the intermembrane space of the mitochondria and is thought to function as a protein quality control protease. Our previous studies showed that loss of the enzymatic activity of HTRA2 due to a Ser276Cys missense mutation in its catalytic domain is associated with early onset neurodegeneration, multiple tissue atrophy and premature lethality in homozygous htra2mnd2 mice, suggesting that HTRA2 is neuroprotective. To further investigate the role of HTRA2 in neuronal cell survival and the impact of its loss of function in non-neuronal tissues of adult mice, we generated transgenic htra2mnd2 mice expressing a neuron-targeted human HTRA2 transgene. Notably, this HTRA2 transgene rescues htra2mnd2 mice from early onset neurodegeneration, and other phenotypic abnormalities and prevents their early death, indicating that HTRA2 activity in neuronal mitochondria is important for neuronal cell survival. However, as the rescued htra2mnd2 mice grow older they exhibit specific phenotypic abnormalities indicative of premature aging. These include premature weight loss, osteoporosis, lordokyphosis, muscle atrophy, heart enlargement, increased autophagy and reduced life span. There is also a significant increase in the levels of clonally expanded mitochondrial DNA (mtDNA) deletions in their tissues. Our findings suggest that HTRA2-regulated protein quality control in the intermembrane space of mitochondria is important for the maintenance of mitochondrial homeostasis, and loss of HTRA2 activity can lead to both neurodegeneration and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号