首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
Efficient search of DNA by proteins is fundamental to the control of cellular regulatory processes. It is currently believed that protein sliding, hopping, and transfer between adjacent DNA segments, during which the protein nonspecifically interacts with DNA, are central to the speed of their specific recognition. In this study, we focused on the structural and dynamic features of proteins when they scan the DNA. Using a simple computational model that represents protein-DNA interactions by electrostatic forces, we identified that the protein makes use of identical binding interfaces for both nonspecific and specific DNA interactions. Accordingly, in its one-dimensional diffusion along the DNA, the protein is bound at the major groove and performs a helical motion, which is stochastic and driven by thermal diffusion. A microscopic structural insight into sliding from our model, which is governed by electrostatic forces, corroborates previous experimental studies suggesting that the active site of some regulatory proteins continually faces the interior of the DNA groove while sliding along sugar-phosphate rails. The diffusion coefficient of spiral motion along the major groove of the DNA is not affected by salt concentration, but the efficiency of the search can be significantly enhanced by increasing salt concentration due to a larger number of hopping events. We found that the most efficient search comprises ∼ 20% sliding along the DNA and ∼ 80% hopping and three-dimensional diffusion. The presented model that captures various experimental features of facilitated diffusion has the potency to address other questions regarding the nature of DNA search, such as the sliding characteristics of oligomeric and multidomain DNA-binding proteins that are ubiquitous in the cell.  相似文献   

4.
5.
Large genomes pose a challenge to DNA repair pathways because rare sites of damage must be efficiently located from among a vast excess of undamaged sites. Human alkyladenine DNA glycosylase (AAG) employs nonspecific DNA binding interactions and facilitated diffusion to conduct a highly redundant search of adjacent sites. This ensures that every site is searched, but could be a detriment if the protein is trapped in a local segment of DNA. Intersegmental transfer between DNA segments that are transiently in close proximity provides an elegant solution that balances global and local searching processes. It has been difficult to detect intersegmental transfer experimentally; therefore, we developed biochemical assays that allowed us to observe and measure the rates of intersegmental transfer by AAG. AAG has a flexible amino terminus that tunes its affinity for nonspecific DNA, but we find that it is not required for intersegmental transfer. As AAG has only a single DNA binding site, this argues against the bridging model for intersegmental transfer. The rates of intersegmental transfer are strongly dependent on the salt concentration, supporting a jumping mechanism that involves microscopic dissociation and capture by a proximal DNA site. As many DNA-binding proteins have only a single binding site, jumping may be a common mechanism for intersegmental transfer.  相似文献   

6.
7.
8.
9.
10.
11.
12.
In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA. The observed 1D diffusion constant of 4×10?12 cm2/s is two orders of magnitude smaller than derived from previous kinetic experiments, but falls in the range of values determined more recently using single molecule methods. This strongly supports the notion that sliding could play at most a minor role in the association kinetics of binding of lac repressor to lac operator and that other processes such as hopping and intersegment transfer contribute to facilitate the DNA recognition process.  相似文献   

13.
14.
15.
DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.  相似文献   

16.
17.
Many DNA regulatory factors require communication between distantly separated DNA sites for their activity. The type IIF restriction enzyme SfiI is often used as a model system of site communication. Here, we used fast-scanning atomic force microscopy to monitor the DNA cleavage process with SfiI and the changes in the single SfiI-DNA complex in the presence of either Mg2+ or Ca2+ at a scan rate of 1–2 fps. The increased time resolution allowed us to visualize the concerted cleavage of the protein at two cognate sites. The four termini generated by the cleavage were released in a multistep manner. The high temporal resolution enabled us to visualize the translocation of a DNA strand on a looped complex and intersegmental transfer of the SfiI protein in which swapping of the site is performed without protein dissociation. On the basis of our results, we propose that the SfiI tetramer can remain bound to one of the sites even after cleavage, allowing the other site on the DNA molecule to fill the empty DNA-binding cleft by combining a one-dimensional diffusion-mediated sliding and a segment transfer mechanism.  相似文献   

18.
19.
20.
It has been proposed that certain type II restriction enzymes (REs), such as EcoRV, track the helical pitch of DNA as they diffuse along DNA, a so-called rotation-coupled sliding. As of yet, there is no direct experimental observation of this phenomenon, but mounting indirect evidence gained from single-molecule imaging of RE-DNA complexes support the hypothesis. We address this issue by conjugating fluorescent labels of varying size (organic dyes, proteins and quantum dots) to EcoRV, and by fusing it to the engineered Rop protein scRM6. Single-molecule imaging of these modified EcoRVs sliding along DNA provides us with their linear diffusion constant (D(1)), revealing a significant size dependency. To account for the dependence of D(1) on the size of the EcoRV label, we have developed four theoretical models describing different types of motion along DNA and find that our experimental results are best described by rotation-coupled sliding of the protein. The similarity of EcoRV to other type II REs and DNA binding proteins suggests that this type of motion could be widely preserved in other biological contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号