首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以小麦品种‘西农88’(Triticum aestivum L.,cv.Xinong 88)为材料,研究了外源施加不同浓度茉莉酸(1、2.5、5、10 mmol/L)对UV-B辐射(1.5 kJ·m-2·d-1)下小麦幼苗光合色素、抗氧化酶、丙二醛、游离脯氨酸、紫外吸收物、花青素、根系活力等生理指标以及对其生长的影响,探讨了茉莉酸在UV-B辐射胁迫中的可能作用及其作用机制.研究结果表明,外源茉莉酸对小麦幼苗生理指标产生显著影响,并且表现出浓度效应,其中较低浓度的茉莉酸(1 mmol/L和2.5 mmol/L)能明显提高小麦幼苗的UV-B抗性.表现为低浓度茉莉酸显著提高UV-B辐射下小麦幼苗叶片中的总叶绿素含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性.并且外源施加的茉莉酸还能够增加小麦幼苗的游离脯氨酸含量,降低脂质过氧化水平,提高花青素含量,增强根系活力.可见,茉莉酸通过提高小麦幼苗的抗氧化酶活性,增加渗透调节物含量以及保护性色素含量,从而缓解膜脂过氧化程度和提高防御物质含量,进而增强植物抵抗UV-B辐射胁迫的能力,保证小麦幼苗正常生长.  相似文献   

2.
Very few studies have evaluated the effects of UV-B radiation on trees. especially deciduous species. In this study we evaluate the effects of supplemental UV-B radiation on the growth and photosynthetic capacity of sweetgum (Liquidambar styraciflua L.). Sweetgum seedlings were grown for 2 years in the field under either ambient or supplemental UV-B radiation. Artificial UV-B radiation was supplied by fluorescent lamps at a maximum daily supplementation of either 3.1 or 5.0 kJ of biologically effective UV-B radiation. Over the 2-year period, supplemental UV-B radiation had little effect on total plant biomass or photosynthetic capacity. However, subtle changes in leaf physiology, carbon allocation, and growth were observed. Supplemental UV-B radiation reduced photosynthetic capacity only during the first year, while leaf area and biomass were reduced in the second year. Alterations in carbon allocation included an increase in branch number and root to shoot ratio. While these data do not indicate that the productivity of sweetgum would likely be compromised by an increase in solar UV-B radiation, they do suggest that the UV-B portion of the solar spectrum contributes to the regulation of sweetgum growth and development. Therefore the possibility of significant consequences to sweetgum due to possible increases in UV-B radiation cannot be ruled out.  相似文献   

3.
Deckmyn  Gaby  Impens  Ivan 《Plant Ecology》1997,128(1-2):235-240
The interactive effects of N-deficiency and enhanced UV-B radiation on growth, photosynthesis and pigmentation of rye were studied. The plants were grown for 5 weeks in growth chambers with high (700 mol m-2 s-2) irradiance levels. A 30% difference in UV-B at plant level was achieved by using different thicknesses of UV-B transparent Plexiglass. One half of the plants received optimal N nutrition, while the other received half of this dose. Both enhanced UV-B and N deficiency strongly decreased production (from 24–33%). The combined effect was additive (no interaction) on most parameters, including total dry weight production which was 52% lower than in the control series. Significant interaction was found on the root/shoot ratio. While reduced N supply induced an increase in the ratio at normal UV-B irradiation, under the increased UV-B, N deficiency had no effect on the root/shoot ratio. The reduced biomass due to UV-B was clearly correlated to a reduction in photosynthesis. At optimal N supply the plants increased the production of protective pigments in response to UV-B, but at reduced N supply this response was lacking. The increased N content of the high UV-B/high N plants could be a result of increased flavonoid production as well as changes in light penetration in the canopy.  相似文献   

4.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

5.
The effects of elevated UV-B radiation on growth, symbiotic function and concentration of metabolites were assessed in purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea grown outdoors either on tables under supplemental UV-B radiation or in chambers covered with different types of plexi-glass to attenuate solar ultraviolet radiation. Moderately and highly elevated UV-B exposures simulating 15% and 25% ozone depletion as well as sub- ambient UV-B did not alter organ growth, plant total dry matter and N content per plant in both L. luteus and V. atropurpurea. In contrast, elevated UV-B increased (P <0.05) flavonoid and anthocyanin concentrations in roots and leaves of L. luteus, but not of V. atropurpurea. Feeding nodulated plants of L. luteus under elevated UV-B radiation with 2 mM NO3 increased (P <0.05) nodule, leaf and total dry matter, and whole plant N content. With V. atropurpurea, NO3 reduced (P <0.05) nodule activity, root %N and concentrations of flavonoids, anthocyanins in roots and leaves and soluble sugars in roots, in contrast to an observed increase (P <0.05) in nodule dry matter per plant. Similarly, supplying 2 mM NO3 to L. luteus plants exposed to sub-ambient UV-B radiation significantly reduced individual organ growth, plant total biomass, nodule dry matter, nodule %N, and whole plant N content, as well as root concentrations of flavonoids, anthocyanins, soluble sugars, and starch of L. luteus, but not V. atropurpurea plants. These results show no adverse effect of elevated UV-B radiation on growth and symbiotic function of L. luteus and V. atropurpurea plants. However, NO3 supply promoted growth in L. luteus plants exposed to the highly elevated UV-B radiation.  相似文献   

6.
Selenium (Se) is beneficial for some plants and is able to increase resistance and antioxidant capacity of plants subjected to stressful environment. In this work, the effects of enhanced ultraviolet-B (UV-B) radiation, Se supply, and their combination on growth and physiological traits of wheat (Triticum aestivum L., cv. Han NO.7086) seedlings were studied. The objective was to elucidate whether Se could alleviate the expected adverse effects of UV-B stress on seedlings. UV-B treatment caused a marked decline in growth parameters and total chlorophyll content and changed biomass allocation between aboveground and underground parts, which led to an increase in the root/shoot ratio. UV-B treatment also increased MDA content and the rate of superoxide radical (O2·−) production, although it increased some antioxidant (proline, phenolic compounds, and flavonoids) content and activity of antioxidant enzymes (peroxidase, superoxide dimutase, catalase (CAT)). Se treatment only increased total chlorophyll content and CAT activity. Compared with UV-B treatment alone, the combined treatment with UV-B and Se induced a significant increase in the biomass, total chlorophyll content, antioxidant content, and activity of antioxidant enzymes, and an evident decrease in MDA content and the rate of O2·− production. The results of this study demonstrated that Se alleviated the damage caused by UV-B to wheat seedlings to some extent by increasing antioxidant enzyme activity and antioxidant content.  相似文献   

7.
兰春剑  江洪  黄梅玲  胡莉 《生态学报》2011,31(24):7516-7525
通过对UV-B辐射胁迫下亚热带典型木本杨桐幼苗的生长及光合生理的研究,探讨植物对于UV-B辐射胁迫的生理响应及适应性机理,进而揭示UV-B辐射变化对亚热带森林树种的影响.实验设置UV-B辐射滤光组、自然光对照组以及辐射增强组,选择亚热带典型树种杨桐(Cleyera japonica Thunb.)幼苗为实验材料.研究结果表明:(1)增强UV-B辐射会降低杨桐幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,且这种胁迫在时间上具有积累性.(2)增强或降低辐射强度都会抑制杨桐地径的生长,增强辐射会产生更显著的抑制;降低辐射强度会对杨桐幼苗的株高生长产生促进作用,反之,则会抑制其生长.3个测定期数据综合分析显示随着处理时间的加长,这种胁迫作用有减小的趋势.(3)对光响应曲线的分析表明相对于自然光条件下的UV-B辐射,降低其强度对杨桐幼苗光合作用有显著的促进作用,反之则会抑制,不过抑制作用并不显著;对于光合特征参数的分析表明增强或降低UV-B辐射会显著降低杨桐幼苗的光饱和点(LSP)和光补偿点(LcP),而对最大净光合速率(Amax)、表观光合量子效率(AQY)、暗呼吸速率(Rd)影响均不显著,表明辐射胁迫对杨桐幼苗利用光能的效率影响不大,从而也并未对杨桐的光合作用产生显著性的伤害,但是由于森林树种的多年生特性,这种影响将是积累性的或延迟的,UV-B所造成的光合作用或光能利用率的微小变化都可能会积累成长期影响.因此,对森林树种进行长期研究是必要的.  相似文献   

8.
Three-year-old birch (Betula pendula Roth.) seedlings were exposed, in the field, to supplemental levels of UV-B radiation. Control seedlings were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Enhanced UV-B radiation had no significant effects on height growth, and shoot and root biomass of birch seedlings. Leaf expansion rate increased transiently in the middle of the growing period in enhanced UV-B- and UV-A-exposed plants; however, final leaf size and relative growth rate remained unaffected. Leaf thickness and spongy intercellular spaces were increased in UV-B-exposed seedlings along with increased density of glandular trichomes. At the ultrastructural level, enhanced UV-B increased the number of cytoplasmic lipid bodies, and abnormal membrane whorls were found. Both enhanced UV-B and UV-A radiation induced swelling of chloroplast thylakoids. Stomatal density and conductance were significantly increased by elevated UV-B radiation. UV-A radiation increased the length and width of stomata, whereas UV-B radiation had only a marginal effect on stomatal size. UV-A and enhanced UV-B radiation attenuated the appearance of necrotic spots in autumn, probably caused by the fungus Pyrenopeziza betulicola, suggesting a direct harmful effect of UV on pathogens or reduced susceptibility to pathogens in UV-exposed seedlings. Secondary metabolite analysis showed increases in (+)-catechin, quercetin, cinnamic acid derivative, apigenin and pentagalloylglucose in birch leaves under enhanced UV-B radiation. Negative correlations between apigenin, and particularly quercetin concentrations and lipid peroxidation levels indicated an antioxidant role of secondary metabolites in birch leaves exposed to UV-B radiation.  相似文献   

9.
《植物生态学报》2017,41(4):471
Aims Exotic plant invasions are important components of global change, threatening both the stability and function of invaded ecosystems. Shifts in competitive ability of invasive plants versus their native congeners have been documented. Enhanced UV-B radiation and nitrogen (N) deposition might interact with soil biota communities impacting the invasion process of exotic plant species. To understand the potential effects by UV-B and N with soil biota on plant growth would enhance our understanding of the mechanisms in plant invasions in the context of global change.
Methods We conducted a full-factorial pot experiment in the native range (China) of Triadica sebifera invading US to investigate how UV-B radiation, N and soil biota together determined their seedling growth.
Important findings The results showed that UV-B radiation, N and soil sterilization together impacted the growth of T. sebifera seedlings. UV-B radiation induced changes in biomass allocation with larger leaf biomass observed in response to UV-B radiation. In addition, N increased aboveground biomass and decreased root biomass simultaneously. Soil biota imposed positive effects on growth of T. sebifera, and the addition of N amplified these positive effects. The negative effects by UV-B radiation on growth of T. sebifera showed no response to N addition. Plant height, leaf biomass and total biomass of the invasive T. sebifera populations out- performed those of the native ones. In addition, invasive T. sebifera populations weakened the dependence of root/shoot ratio and root biomass on local soil microorganisms than native populations, but enhanced that of leaf area ratio.  相似文献   

10.
Assessments of potential impacts of global climate change often focus exclusively on plants; however, as the base of most food webs, plants generally experience abiotic stresses concomitantly with biotic stresses. Longleaf plantain, Plantago lanceolata L., is a cosmopolitan temperate perennial weed that experiences a wide range of environmental conditions throughout its range. We examined the impacts of elevated levels of exposure to shortwave (UV-B) radiation on this plant, on two herbivores associated with this plant, and on the plant-herbivore interaction. Plantains were grown at 6 and 12 kJ m–2 d–1 BE300 UV-B radiation and concentrations of iridoid glycosides (aucubin and catalpol), verbascosides, and nitrogen were measured. In terms of plant impacts, we found that iridoid glycoside concentrations were unchanged by elevated UV-B radiation, whereas, in one experiment, the concentration of verbascosides in young leaves and levels of nitrogen in old leaves increased under elevated UV-B radiation. Variation in plant chemistry due to leaf age and maternal family was greater than variation due to UV-B exposure. When caterpillars were fed excised leaves from plants grown under elevated UV-B, growth and survivorship of the specialist herbivore, Precis coenia Hbn. (Lepidoptera: Nymphalidae), were unaltered and growth of the generalist herbivore, Trichoplusia ni (Hbn.) (Lepidoptera: Noctuidae), was accelerated. When the caterpillars were reared on potted plants at high and low levels of UV-B radiation, growth and survivorship of P. coenia were unchanged while growth of T. ni was significantly depressed by elevated UV-B. Elevated UV-B altered allocation patterns of above-ground biomass in these plants; masses of crowns and reproductive tissue were reduced. UV-B levels, however, did not affect distribution of damage to foliage inflicted by either species. In two additional experiments with artificial diet, designed to test the direct effect of UV-B radiation on caterpillars, growth and survivorship of P. coenia were unaltered while survivorship of T. ni was significantly depressed when caterpillars were exposed to elevated UV-B radiation. These studies collectively demonstrate that higher trophic level impacts of UV-B-induced changes in plants depend on the identity of the herbivore and its degree of adaptation not only to variation in hostplant quality but also variation in its light environment.  相似文献   

11.
The effects of enhanced UV-B radiation were investigated in the carnivorous plant Pinguicula vulgaris in a field experiment performed in Abisko, North Sweden (68° 21' N, 18° 49' E, 380 m above sea level). Potted plants were exposed to either ambient or ambient plus supplemental UV-B radiation, simulating a 15% ozone depletion. No effect was observed on either the epicuticular (external) or cellular (internal) UV absorbing capacity of the leaves. However, the anthocyanin content was more than doubled by supplemental UV-B radiation. In laboratory experiments, the anthocyanin rich, UV-B treated leaves were less susceptible to a low temperature/high light photoinhibitory treatment, as judged by in vivo chlorophyll fluorescence measurements. Yet, this potential benefit did not considerably affect the growth of the plant in the field (leaf area and dry mass, reproductive dry mass, flowering frequency, senescence rates, dry mass of winter buds). However, there was a marginally significant increase in root dry mass and in the root to shoot ratio, which may underlie the significant increase in the nitrogen content of the leaves. We suggest that P. vulgaris is resistant against UV-B radiation damage and that the possible negative effects of additional UV-B radiation on the growth of these plants may have been effectively counterbalanced by the lower risk of photoinhibition, due to the concomitant increase in anthocyanins.  相似文献   

12.
Pisum sativum cv. Guido grown under controlled environment conditions was exposed to either low or high UV-B radiation (2·2 or 9·9 kJ m–2 d–1 plant-weighted UV-B, respectively). Low or high UV-B was maintained throughout growth (LL and HH treatments, respectively) or plants were transferred between treatments when 22 d old (giving LH and HL treatments). High UV-B significantly reduced plant dry weight and significantly altered plant morphology. The growth and morphology of plants transferred from low to high UV-B were little affected, when compared with those of LL plants. By contrast, plants moved from high to low UV-B showed marked increases in growth when compared with HH plants. This contrast between HL and LH appeared to be related to the effect of UV-B on plant development. Exposure to high UV-B throughout development consistently reduced leaf areas. In fully expanded leaves there was no significant UV-B effect on cell area and reduced leaf area could be attributed to reduced cell number, suggesting effects on leaf primordia. Further reductions in the leaf area of younger leaves were the result of the slower development rate of plants grown at high UV-B, which also resulted in significant reductions in leaf number.  相似文献   

13.
Levizou  E.  Manetas  Y. 《Plant Ecology》2001,154(1-2):179-186
Seedlings of two Mediterranean plants, the slow-growing, evergreen sclerophyll Ceratonia siliqua L. and the fast growing drought semi-deciduous Phlomis fruticosa L., were grown for one year in the field at ambient or ambient plus supplemental UV-B radiation (equivalent to a 15% ozone depletion) and two levels of applied fertilizers (NPK). The effects on growth, morphological, anatomical and physiological parameters were measured at final plant harvest. Additional nutrients increased leaf nitrogen, improved growth and reduced the root/shoot ratio in both plants, yet these effects were more pronounced in the fast growing P. fruticosa. A nutrient-induced increase in chlorophyll content was also observed in this plant. The growth responses to UV-B radiation were different for the two species. Growth in C. siliqua was not affected by UV-B radiation at both nutrient levels and the same was true for P. fruticosa at low nutrients. However, at the high nutrient level, supplemental UV-B radiation improved growth in P. fruticosa, indicating a strong interaction between the treatments. Photosystem II (PSII) photochemical efficiency, methanol-extractable UV-B absorbing capacity, total phenolics and tannins were not affected by either treatment in both plants. It is concluded that nutrient levels can strongly modify the UV-B radiation effects on growth of P. fruticosa. We presume that this may be correlated to the fast growing habit of this species.  相似文献   

14.
Interest in the potential consequences of stratospheric ozone depletion has led to numerous studies that have evaluated the effects of ultraviolet-B (UV-B) radiation on plant growth and productivity. However, few studies have been conducted on plants from natural ecosystems. Differences in solar UV-B radiation along latitudinal or elevational gradients may have resulted in plants from diverse habitats developing contrasting sensitivities to UV-B radiation. In this study, seeds were collected along a 3,000-m elevational gradient in Hawaii and then germinated and grown in an unshaded greenhouse with either no UV-B radiation or one of two daily UV-B irradiances, 15.5 or 23.1 kj m2. Seedlings were grown for 12 weeks and harvested to determine whether UV-B radiation altered plant biomass. The responses to UV-B radiation varied among species, but, in general, sensitivity to UV-B radiation was reduced as the elevation of seed collection increased. Of the 33 species tested, UV-B radiation significantly reduced plant height in 14 species and biomass in eight species. Biomass increased in four species grown under UV-B radiation. This study provides clear evidence that natural plant populations exhibit wide variation in UV-B radiation sensitivity and that this variation is related to the natural (ambient) UV-B radiation environment in which these plants grow.  相似文献   

15.
Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280–320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L−1 Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.  相似文献   

16.
Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.  相似文献   

17.
Enhanced ultraviolet-B radiation (UV-B, 280?C320?nm) is recognized as one of the environmental stress factors that cannot be neglected. Jasmonic acid (JA) is an important signaling molecule in a plant??s defense against biotic and abiotic stresses. To determine the role of exogenous JA in the resistance of wheat to stress from UV-B radiation, wheat seedlings were exposed to 0.9?kJ?m?2?h?1 UV-B radiation for 12?h after pretreatment with 1 and 2.5?mM JA, and the activity of antioxidant enzymes, the level of malondialdehyde (MDA), the content of UV-B absorbing compounds, photosynthetic pigments, and proline and chlorophyll fluorescence parameters were measured. The results of two-way ANOVA illustrated that the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), MDA level, anthocyanin and carotenoid (Car) content, and almost all chlorophyll fluorescence parameters were significantly affected by UV-B, JA, and UV-B?×?JA (P?<?0.05) [the maximal efficiency of photosystem II photochemistry (F v/F m) was not affected significantly by UV-B radiation]. Duncan??s multiple-range tests demonstrated that UV-B stress induced a significant reduction in plant photosystem II (PSII) function and SOD activity and an increased level of membrane lipid peroxidation, indicative of the deleterious effect of UV-B radiation on wheat. JA pretreatment obviously mitigated the detrimental effect of UV-B on PSII function by increasing F v/F m, reaction centers?? excitation energy capture efficiency (F v??/F m??), effective photosystem II quantum yield (??PSII), and photosynthetic electron transport rate (ETR), and by decreasing nonphotochemical quenching (NPQ) of wheat seedlings. Moreover, the activity of SOD and the content of proline and anthocyanin were provoked by exogenous JA. However, the MDA level was increased and Car content was decreased by exogenous JA with or without the presence of supplementary UV-B, whereas the contents of chlorophyll and flavonoids and related phenolics were not affected by exogenous JA. Meanwhile, exogenous JA resulted in a decrease of CAT and POD activities under UV-B radiation stress. These results partly confirm the hypothesis that exogenous JA could counteract the negative effects of UV-B stress on wheat seedlings to some extent.  相似文献   

18.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

19.
Liu Y  Zhong Z C 《农业工程》2009,29(4):244-248
The impact of UV-B radiation on endogenous hormones in plants has recently drawn attention from researchers. The mechanism for reduced stem elongation by UV-B might be due to changes in the phytohormone levels, especially IAA, which plays a role in stem elongation. In this study, effects of UV-B radiation on Trichosanthes kirilowii Maxim (T. kirilowii) seedlings in greenhouse-grown plants were investigated. The results indicated that: (1) In comparison to controls, exposure to 0.029 Jm?2 s?1. UV-B radiation led to accumulation of endogenous abscisic acid (ABA) and zeatinriboside (ZR) in the plant contents, and decreased contents of endogenous indole-3-acetic acid (IAA) and gibberellic acid (GA1/3). Exposure to UV-B radiation reduced the height and leaf area of plants. As a result, total biomass (plant dry weight) was lower. (2) In comparison to controls, addition of 2 mg l?1 α-naphthaleneacetic acid (α-NAA) slightly increased the contents of IAA, GA1/3 and ZR, and decreased the content of ABA in leaves. This addition of α-NAA significantly increased plant height and leaf area, but only slightly increased total biomass. (3) Addition of α-NAA to UV-B-exposed plants: increased the content of endogenous IAA, GA1/3 and ZR; decreased accumulation of endogenous ABA; and increased plant height and leaf area in comparison to plants that only were exposed to UV-B. Moreover, total biomass increased slightly. This suggests that addition of α-NAA may compensate to a certain extent for the lack of IAA resulting from UV-B radiation; it also increases the content of GA1/3 and ZR, decreases the accumulation of ABA, and promotes the growth of plants.  相似文献   

20.
The solar ultraviolet-B (UV-B) background level is often high and posing an environmental challenge in most of the tropical region of the world, including India. This prompted the present study to investigate the effects of supplemental UV-B (sUV-B) radiation (ambient + 7.2 kJ m−2 day−1) on various growth, physiological and biochemical characteristics of six locally grown cultivars of wheat (Triticum aestivum L.). Plants being sessile protect themselves from the harmful UV-B radiation by synthesizing flavonoids to screen UV-B and also by inducing antioxidant defence system. sUV-B radiation negatively affected the growth of wheat seedlings but the response varied amongst the cultivars. Leaf injury was maximum in cv. PBW154 and minimum in HD2824. Values of sensitivity index also revealed that HD2824 was least sensitive to sUV-B, while PBW154 was most sensitive. All the assessed biochemical parameters corresponded well with the sensitivity index of different cultivars of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号