首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, FoxO1 transgenic mice (transgenic, FoxO1-Tg) and C57BL/6 wild-type (wild-type, FoxO1-WT) mice were used to establish chronic colitis by drinking water containing dextran sulphate sodium (DSS). Afterwards, we observed the life changes in mice and assessed the pathological changes by H&E tissue staining. In addition, the TLR4/MyD88/MD2-NF-κB inflammatory signals were detected. As a result, under DSS treatment, the activation level of TLR4/MyD88/MD2-NF-κB inflammatory signal was higher in FoxO1-Tg mice than that in FoxO1-WT mice. Meanwhile, the intestinal mucosal tissue damage was more severe, the down-regulation of tight junction protein level was more significant and the life quality was decreased to a higher degree in FoxO1-Tg mice compared with those in FoxO1-WT mice. Caco-2 cells were used to mimic the intestinal mucosal barrier model for in vitro assays. In addition, lentiviral packaging FoxO1 overexpressing plasmid was transfected into Caco-2 cells for FoxO1 overexpression. TNF-α intervention was performed for intestinal mucosal inflammatory response model. Consequently, the down-regulation of FoxO1 inhibited the activation of TLR4/MyD88/MD2-NF-κB inflammatory signal, decreased the mucosal barrier permeability and up-regulated the expression of tight junction protein. By contrast, the overexpression of FoxO1 increased the mucosal barrier permeability and down-regulated the level of tight junction protein.  相似文献   

2.
益生菌与肠黏膜互作的分子机制研究进展   总被引:1,自引:0,他引:1  
益生菌是一类定植于动物肠道,可辅助动物消化功能,维护肠道菌群平衡并可影响肠道免疫系统,有益于动物健康的重要调节性菌群。该类菌群与动物肠上皮细胞间互作的分子机制包括菌体表面分子如磷脂壁酸(phosphatidicacid,LTA)、表面层蛋白(Slayerprotein)等与宿主的粘附相关蛋白分子结合,通过占位效应抑制有害菌群在肠道内的定植;益生菌还可刺激肠道细胞分泌B防御素2、细菌素和有机酸等可抑制甚至杀灭有害菌群;在益生菌作用下,肠道上皮细胞可增强粘液糖蛋白、紧密连接蛋白occludin和ZO-1等分子的表达,加厚并加固肠道黏膜屏障;益生菌相关抗原可通过与抗原递呈细胞表面模式识别受体(TLRs等)分子结合,激活递呈细胞,启动各免疫细胞的交互作用,调节肠道免疫状态。  相似文献   

3.
Live probiotic bacteria are effective in reducing gut permeability and inflammation. We have previously shown that probiotics release peptide bioactive factors that modulate epithelial resistance in vitro. The objectives of this study were to determine the impact of factors released from Bifidobacteria infantis on intestinal epithelial cell permeability and tight junction proteins and to assess whether these factors retain their bioactivity when administered to IL-10-deficient mice. B. infantis conditioned medium (BiCM) was applied to T84 human epithelial cells in the presence and absence of TNF-alpha and IFN-gamma. Transepithelial resistance (TER), tight junction proteins [claudins 1, 2, 3, and 4, zonula occludens (ZO)-1, and occludin] and MAP kinase activity (p38 and ERK) were examined. Acute effects of BiCM on intestinal permeability were assessed in colons from IL-10-deficient mice in Ussing chambers. A separate group of IL-1-deficient mice was treated with BiCM for 4 wk and then assessed for intestinal histological injury, cytokine levels, epithelial permeability, and immune response to bacterial antigens. In T84 cells, BiCM increased TER, decreased claudin-2, and increased ZO-1 and occludin expression. This was associated with enhanced levels of phospho-ERK and decreased levels of phospho-p38. BiCM prevented TNF-alpha- and IFN-gamma-induced drops in TER and rearrangement of tight junction proteins. Inhibition of ERK prevented the BiCM-induced increase in TER and attenuated the protection from TNF-alpha and IFN-gamma. Oral BiCM administration acutely reduced colonic permeability in mice whereas long-term BiCM treatment in IL-10-deficient mice attenuated inflammation, normalized colonic permeability, and decreased colonic and splenic IFN-gamma secretion. In conclusion, peptide bioactive factors from B. infantis retain their biological activity in vivo and are effective in normalizing gut permeability and improving disease in an animal model of colitis. The effects of BiCM are mediated in part by changes in MAP kinases and tight junction proteins.  相似文献   

4.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

5.
The coxsackie- and adenovirus receptor (CAR) is a transmembrane protein belonging to the immunoglobulin superfamily. The function of CAR as a virus receptor has been extensively analyzed, while its physiological role and expression pattern in adult tissues have remained less clear. CAR associates with epithelial tight junctions in vitro and mediates cell-cell adhesion. Using a set of affinity-purified antibodies, we show that CAR is predominantly expressed in epithelial cells lining the body cavities in adult mice, where it specifically co-localizes with the tight junction components ZO-1 and occludin. Notably, CAR could not be detected in endothelial cells of the vasculature, including brain capillaries. CAR expression correlated positively with the maturity of tight junctions and inversely with permeability. With a few exceptions, the two known CAR isoforms were co-expressed in most epithelial cells analyzed. A CAR mutant lacking the intracellular tail over-expressed in transgenic mice was diffusely localized over the plasma membrane, showing the importance of this domain for correct subcellular localization in vivo. We conclude that CAR is localized to epithelial tight junctions in vivo where it may play a role in the regulation of epithelial permeability and tissue homeostasis.  相似文献   

6.
7.
目的

探讨双歧杆菌三联活菌对高脂饮食诱导的肥胖小鼠的改善作用及其机制。

方法

将24只LDLR-/-小鼠随机分为正常组(n = 8,普通饲料,灌胃生理盐水)、高脂组(n = 8,高脂饲料,灌胃生理盐水)和干预组(n = 8,高脂饲料,灌胃双歧杆菌三联活菌)。所有小鼠均干预16周,每2周记录小鼠体质量,第15周进行口服葡萄糖耐量试验。小鼠处死后,检测血清中脂质和胰岛素指标;采用RT-PCR分析回肠中炎症因子和肠道紧密连接蛋白ZO-1、Occludin的mRNA相对表达量;采用HE染色评估回肠组织病理变化;采用16S rDNA高通量测序分析小鼠肠道微生物群变化特点。

结果

与正常组相比,高脂组小鼠表现出明显的体质量增加、糖脂代谢紊乱、回肠炎症水平增加和肠道微生物群紊乱。干预后,干预组小鼠体质量下降,糖脂代谢紊乱改善,回肠炎症因子TLR4和TNF-α相对表达量显著下降(均P<0.05);而肠道紧密连接蛋白ZO-1和Occludin相对表达量显著增加(均P<0.05)。测序结果表明,干预组小鼠肠道菌群中Firmicutes和Bifidobacterium丰度增加。

结论

双歧杆菌三联活菌可能通过优化肥胖小鼠的肠道微生物群结构,增加Firmicutes和Bifidobacterium丰度,进而减轻肥胖小鼠体质量,调节糖脂代谢,降低肠道内炎症和修复肠黏膜屏障。

  相似文献   

8.
Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.  相似文献   

9.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

10.
11.
The present study was designed to investigate the mechanism of myeloid differentiation protein 2 (MD2) on intestinal mucosa destruction in mice with chronic colitis. Briefly, a chronic colitis mouse model was established by the administration of dextran sulfate sodium (DSS) in transgenic mice of MD2 overexpression (Transgenic, MD2-Tg) and C57BL/6 wild-type mice (MD2-WT). In addition, Caco-2 cells were cultured to form a monolayer cell model in vitro. The small interfering RNA was utilized to silence the MD2 gene in Caco-2 cells, and tumor necrosis factor-α (TNF-α) was used to establish the model of intestinal mucosal inflammation. After DSS induction, the intestinal mucosal tissue inflammation was more severe in MD2-Tg mice than MD2-WT. In addition, the intestinal mucosa was severely damaged, the intestinal mucosal permeability was increased, bacterial translocation was obvious, and the expression levels of MD2, MyD88, Toll-like receptor 4 (TLR4), and HMGB1 in mucosal tissues were significantly increased, while the expression levels of tight junction proteins, occludin, and claudin-1 were significantly lower in MD2-Tg mice compared with those in MD2-WT mice. TNF-α could induce inflammatory apoptosis in Caco-2 cell models. After MD2 silencing, the apoptotic level was decreased, the value of transepithelial electrical resistance was increased, the permeability of intestinal mucosa was decreased, the cellular expression levels of MD2, MyD88, TLR4, and HMGB1 were decreased, while the expression levels of tight junction proteins, occludin and claudin-1 were increased. MD2 could aggravate the destruction of intestinal mucosa in chronic colitis through the HMGB1-TLR4-MyD88 pathway.  相似文献   

12.
Epithelial-derived thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine that triggers dendritic cell (DC)-mediated Th2-type inflammatory responses. The activated DCs can penetrate the epithelium to directly take up antigen without compromising the barrier function. Although it is reported that DCs express tight junction molecules and can establish tight junction-like structures with adjacent epithelial cells to preserve the epithelial barrier, the regulation of expression of tight junction molecules in DCs remains unknown. In the present study, to investigate the mechanical regulation of expression of tight junction molecules in DCs, XS52 DCs that was a long-term DC line established from the epidermis of a newborn BALB/c mouse, were treated with TSLP or toll-like receptor (TLR) ligands. In XS52 cells, tight junction molecules claudin-1, -3, -4, -6, -7, -8, and occludin were detected. mRNA expression of TSLP receptor and all these tight junction molecules was significantly increased in activated XS52 cells after treatment with TSLP. In addition, expression of claudin-7 protein was increased in dose- and time-dependent manner. In XS52 cells, which express TLR2, TLR3, TLR4, and TLR7, but not TLR9, expression of claudin-7 protein was also increased after treatment with ligands of TLR2, TLR4 or TLR7/8, Pam3Cys-Ser-(Lys)4, LPS, or CL097. The NF-κB inhibitor IMD-0354 prevented upregulation of claudin-7 after treatment with TSLP or TLR ligands. These findings indicate that TSLP induces expression of tight junction protein claudin-7 in DCs via NF-κB as well as via TLRs and may control tight junctions of DCs to preserve the epithelial barrier during allergic inflammation.  相似文献   

13.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

14.
In Con8 rat mammary epithelial tumor cells, the synthetic glucocorticoid dexamethasone stimulates transepithelial electrical resistance (TER), promotes the remodeling of apical junctions, and down-regulates the level of fascin, an actin-bundling protein that can bind to beta-catenin. We have previously shown that ectopic expression of fascin prevented the glucocorticoid-mediated recruitment of tight junction and adherens junction proteins to the site of cell-cell contact. Here we demonstrate that exogenous treatment or constitutive production of transforming growth factor-alpha (TGF-alpha) ablated the dexamethasone down-regulation of the fascin protein level and disrupted the dexamethasone-induced remodeling of the apical junction and stimulation of the monolayer TER. The response to TGF-alpha was polarized in that basolateral, but not apical, exposure to this growth factor coordinately reversed the steroid control of fascin production and tight junction formation. Expression of dominant negative RasN17 or treatment with the PD098059 MEK inhibitor abolished or attenuated the TGF-alpha disruptive effects on TER, junction remodeling, and fascin protein levels. Our results implicate the regulation of fascin protein levels as a target of cross-talk between the Ras-dependent growth factor signaling and glucocorticoid signaling pathways that controls tight junction dynamics in mammary epithelial tumor cells. We propose that reversing the down-regulation of fascin is critical for the ability of TGF-alpha to disrupt the glucocorticoid-induced remodeling of the apical junction that leads to tight junction formation.  相似文献   

15.
Nectin adhesion molecules are involved in the early steps of cell junction formation. Later during the polarisation process, Nectins are components of epithelial adherens junctions where they are indirectly associated with the E-cadherin/Catenins complex via the adaptator AF-6. To have a better understanding of Nectin-based cell junctions, we looked for some new Nectins' partners. We demonstrate that the scaffold molecule PICK-1, involved in the clustering of junctional receptors in synaptic junctions, interacts directly with Nectins in a PSD-95/Dlg/ZO-1 domain-dependent manner and is localised at adherens junctions in epithelial cells. Finally, we observed that protein interacting with C-kinase-1 (PICK-1) also interacts directly with the junctional adhesion molecules, and we suggest that PICK-1 could be involved in the regulation of both adherens and tight junctions in epithelial cells.  相似文献   

16.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

17.
Tight junctions serve as the rate-limiting barrier to passivemovement of hydrophilic solutes across intestinal epithelia. Afteractivation of Na+-glucosecotransport, the permeability of intestinal tight junctions isincreased. Because previous analyses of this physiological tightjunction regulation have been restricted to intact mucosae, dissectionof the mechanisms underlying this process has been limited. Tocharacterize this process, we have developed a reductionist modelconsisting of Caco-2 intestinal epithelial cells transfected with theintestinal Na+-glucosecotransporter, SGLT1. Monolayers of SGLT1 transfectants demonstratephysiological Na+-glucosecotransport. Activation of SGLT1 results in a 22 ± 5% fall intransepithelial resistance (TER) (P < 0.001). Similarly, inactivation of SGLT1 by addition of phloridzinincreases TER by 24 ± 2% (P < 0.001). The increased tight junction permeability is size selective,with increased flux of small nutrient-sized molecules, e.g., mannitol,but not of larger molecules, e.g., inulin. SGLT1-dependent increases intight junction permeability are inhibited by myosin light-chain kinaseinhibitors (20 µM ML-7 or 40 µM ML-9), suggesting that myosinregulatory light-chain (MLC) phosphorylation is involved in tightjunction regulation. Analysis of MLC phosphorylation showed a 2.08-foldincrease after activation of SGLT1 (P < 0.01), which was inhibited by ML-9(P < 0.01). Thus monolayersincubated with glucose and myosin light-chain kinase inhibitors arecomparable to monolayers incubated with phloridzin. ML-9 also inhibitsSGLT1-mediated tight junction regulation in small intestinal mucosa(P < 0.01). These data demonstrate that epithelial cells are the mediators of physiological tight junctionregulation subsequent to SGLT1 activation. The intimate relationshipbetween tight junction regulation and MLC phosphorylation suggests thata critical step in regulation of epithelial tight junction permeabilitymay be myosin ATPase-mediated contraction of the perijunctionalactomyosin ring and subsequent physical tension on the tight junction.

  相似文献   

18.
We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine.  相似文献   

19.
Tight junctions are unique organelles in epithelial cells. They are localized to the apico-lateral region and essential for the epithelial cell transport functions. The paracellular transport process that occurs via tight junctions is extensively studied and is intricately regulated by various extracellular and intracellular signals. Fine regulation of this transport pathway is crucial for normal epithelial cell functions. Among factors that control tight junction permeability are ions and their transporters. However, this area of research is still in its infancy and much more needs to be learned about how these molecules regulate tight junction structure and functions. In this review we have attempted to compile literature on ion transporters and channels involved in the regulation of tight junctions.  相似文献   

20.
Paracingulin is an M(r) 150-160 kDa cytoplasmic protein of vertebrate epithelial tight and adherens junctions and comprises globular head, coiled-coil rod, and globular tail domains. Unlike its homologous tight junction protein cingulin, paracingulin has been implicated in the control of junction assembly and has been localized at extrajunctional sites in association with actin filaments. Here we analyze the role of paracingulin domains, and specific regions within the head and rod domains, in the function and localization of paracingulin by inducible overexpression of exogenous proteins in epithelial Madin Darby canine kidney (MDCK) cells and by expression of mutated and chimeric constructs in Rat1 fibroblasts and MDCK cells. The overexpression of the rod + tail domains of paracingulin perturbs the development of the tight junction barrier and Rac1 activation during junction assembly by the calcium switch, indicating that regulation of junction assembly by paracingulin is mediated by these domains. Conversely, only constructs containing the head domain target to junctions in MDCK cells and Rat1 fibroblasts. Furthermore, expression of chimeric cingulin and paracingulin constructs in Rat1 fibroblasts and MDCK cells identifies specific sequences within the head and rod domains of paracingulin as critical for targeting to actin filaments and regulation of junction assembly, respectively. In summary, we characterize the functionally important domains of paracingulin that distinguish it from cingulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号