首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Argininosuccinate lyase (EC 4.3.2.1) was purified by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-200. The final enzyme preparation was purified 46-fold compared with the crude extract. Electrophoresis of this preparation revealed three bands, the major one having the enzyme activity. Analysis of the enzyme by gel filtration and by disc electrophoresis (in two different concentrations of acrylamide) gave mol.wts. of 200000 (+/- 15000) and 190000 (+/- 20000) respectively. Treatment with sodium dodecyl sulphate and mercaptoethanol dissociated the enzyme into subunits of mol.wt. 39000 (+/-2000). The results are indicative of the multimeric structure of the enzyme, which is composed of five (perhaps four or six) identical subunits.  相似文献   

2.
3.
We describe the cDNA sequence for ARG7, the gene that encodes argininosuccinate lyase – a selectable nuclear marker – in Chlamydomonas reinhardtii. The 5′ end of the cDNA contains one more exon and the organisation of the mRNA is different from that predicted from the genomic sequence. When expressed under the control of the endogenous RbcS2 promoter, the 2.22-kb cDNA complements the arg7 mutation as well as the genomic DNA. A linear cDNA fragment lacking promoter sequences is also able to complement, suggesting that it could be used in promoter-trapping experiments. Despite the presence of a sequence encoding a potential chloroplast transit peptide in the cDNA the protein is not targeted to the chloroplast, nor can it complement the arg7 mutation when expressed there. By inserting a T7 bacteriophage promoter into the plasmid, a version of the cDNA which is able to complement both the C. reinhardtii arg7 mutant and the Escherichia coli argH mutant has been created. This modified Arg7 cDNA provides two advantages over the genomic DNA currently in use for gene tagging: it is shorter (6.2?kb versus 11.9?kb for pARG7.8φ3), and the selectable marker used in C. reinhardtii is the same as that used in E. coli, making plasmid rescue of the tag much more likely to succeed.  相似文献   

4.
We describe the cDNA sequence for ARG7, the gene that encodes argininosuccinate lyase – a selectable nuclear marker – in Chlamydomonas reinhardtii. The 5′ end of the cDNA contains one more exon and the organisation of the mRNA is different from that predicted from the genomic sequence. When expressed under the control of the endogenous RbcS2 promoter, the 2.22-kb cDNA complements the arg7 mutation as well as the genomic DNA. A linear cDNA fragment lacking promoter sequences is also able to complement, suggesting that it could be used in promoter-trapping experiments. Despite the presence of a sequence encoding a potential chloroplast transit peptide in the cDNA the protein is not targeted to the chloroplast, nor can it complement the arg7 mutation when expressed there. By inserting a T7 bacteriophage promoter into the plasmid, a version of the cDNA which is able to complement both the C. reinhardtii arg7 mutant and the Escherichia coli argH mutant has been created. This modified Arg7 cDNA provides two advantages over the genomic DNA currently in use for gene tagging: it is shorter (6.2 kb versus 11.9 kb for pARG7.8φ3), and the selectable marker used in C. reinhardtii is the same as that used in E. coli, making plasmid rescue of the tag much more likely to succeed. Received: 2 June 1998 / Accepted: 25 September 1998  相似文献   

5.
Chlamydomonas reinhardtii cells are surrounded by a mixture of hydroxyprolin-rich glycoproteins consisting of L-arabinose, D-galactose, D-glucose, and D-mannose residues. The L-arabinose residue is thought to be attached by a transfer of UDP-L-arabinofuranose (UDP-Araf), which is produced from UDP-L-arabinopyranose (UDP-Arap) by UDP-arabinopyranose mutase (UAM). UAM was purified from the cytosol to determine the involvement of C. reinhardtii UAM (CrUAM) in glycoprotein synthesis. CrUAM was purified 94-fold to electrophoretic homogeneity by hydrophobic and size-exclusion chromatography. CrUAM catalyzed the reversible conversion between UDP-Arap and UDP-Araf and exhibited autoglycosylation activity when UDP-D-[14C]glucose was added as substrate. Compared to the properties of native and recombinant CrUAM overexpressed in Escherichia coli, native CrUAM showed a higher affinity for UDP-Arap than recombinant CrUAM did. This increased affinity for UDP-Arap might have been caused by post-translational modifications that occur in eukaryotes but not in prokaryotes.  相似文献   

6.
In Chlamydomonas reinhardtii y-1, newly synthesized chlorophyll a/b-binding apoproteins are degraded when chlorophylls are not present for assembly of stable light-harvesting complexes. A protease was purified from the membrane fraction of degreened y-1 cells, which digested chlorophyll a/b-binding proteins in membranes from C. reinhardtii pg-113, a protease-deficient strain. This protease was active with p-nitroanilides of nonpolar amino acids (Leu and Phe), but not of basic amino acids (Lys and Arg). The apparent molecular weight of the enzyme is 38,000 ± 2,000 as determined by electrophoresis in the presence of sodium dodecyl sulfate. Typical inhibitors of the major classes of proteases were ineffective with this enzyme. Protease activity was constant from pH 7.5 to 9; a plot of log V versus pH suggested that deprotonation of an ionizable group with a pK value of 6.0 to 6.5 is required for activity. The protease was inactivated by diethylpyrocarbonate and by photooxidation sensitized by rose bengal. These results suggested that a histidyl residue is required for catalysis. Although very sensitive to photodynamic conditions in vitro, the enzyme was not inactivated in vivo when cells were exposed to light.  相似文献   

7.
8.
NAD-isocitrate dehydrogenase (NAD-IDH) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by successive chromatography steps on Phenyl-Sepharose, Blue-Sepharose, diethylaminoethyl-Sephacel, and Sephacryl S-300 (all Pharmacia Biotech). The 320-kD enzyme was found to be an octamer composed of 45-kD subunits. The presence of isocitrate plus Mn2+ protected the enzyme against thermal inactivation or inhibition by specific reagents for arginine or lysine. NADH was a competitive inhibitor (Ki, 0.14 mm) and NADPH was a noncompetitive inhibitor (Ki, 0.42 mm) with respect to NAD+. Citrate and adenine nucleotides at concentrations less than 1 mm had no effect on the activity, but 10 mm citrate, ATP, or ADP had an inhibitory effect. In addition, NAD-IDH was inhibited by inorganic monovalent anions, but l-amino acids and intermediates of glycolysis and the tricarboxylic acid cycle had no significant effect. These data support the idea that NAD-IDH from photosynthetic organisms may be a key regulatory enzyme within the tricarboxylic acid cycle.IDH catalyzes the oxidative decarboxylation of isocitrate to produce 2-oxoglutarate. According to the specificity for the electron acceptor, two enzymes with IDH activity are known, NAD-IDH (EC 1.1.1.41) and NADP-IDH (EC 1.1.1.42) (Chen and Gadal, 1990a).In photosynthetic organisms NADP-IDH has been detected in the cytosol, chloroplasts, mitochondria, and peroxisomes. Cytosolic NADP-IDH has been purified from higher plants (Chen et al., 1988) and eukaryotic algae (Martínez-Rivas et al., 1996), and its cDNA has been cloned from alfalfa (Shorrosh and Dixon, 1992), soybean (Udvardi et al., 1993), potato (Fieuw et al., 1995), and tobacco (Gálvez et al., 1996). This 80-kD isoenzyme is a dimer, and it is likely to be involved in the synthesis of NADPH for biosynthetic purposes in the cytosol (Chen et al., 1988), in the synthesis of 2-oxoglutarate for ammonium assimilation (Chen and Gadal, 1990b), and in the cycling, redistribution, and export of amino acids (Fieuw et al., 1995). Chloroplastic NADP-IDH has been studied in higher plants (Gálvez et al., 1994) and eukaryotic algae (Martínez-Rivas and Vega, 1994). It is a 154-kD dimer that has been proposed to be involved in the supply of NADPH for biosynthetic reactions in the chloroplast when photosynthetic NADPH production is low (Gálvez et al., 1994). The mitochondrial NADP-IDH of higher plants may have a physiological role in the production of NADPH, which can be converted to NADH by a transhydrogenase or used to reduce glutathione in the mitochondrial matrix (Rasmusson and Møller, 1990). NADP-IDH activity has also been detected in peroxisomes from spinach leaves (Yamazaki and Tolbert, 1970).NAD-IDH is localized exclusively in the mitochondria in association with the TCA cycle. This enzyme has been purified from several nonphotosynthetic eukaryotes such as fungi (Keys and McAlister-Henn, 1990; Alvarez-Villafañe et al., 1996) and animals (Giorgio et al., 1970), in which it appears to be a 300-kD octamer. Its key regulatory role in the TCA cycle is well documented. The NAD-IDH from yeast is activated by AMP and citrate (Hathaway and Atkinson, 1963), whereas the animal enzyme is activated by ADP and citrate (Cohen and Colman, 1972). In addition, the NAD-IDH cDNAs have been cloned from yeast (Cupp and McAlister-Henn, 1991, 1992) and animals (Nichols et al., 1995; Zeng et al., 1995). In these organisms, the enzyme is composed of two (yeast) or more (animals) different subunits encoded by different genes.To our knowledge, no NAD-IDH from photosynthetic organisms has yet been purified to homogeneity, mainly because of the low stability of the enzyme (Oliver and McIntosh, 1995). However, partial purifications have been reported from pea (Cox and Davies, 1967; Cox, 1969; McIntosh and Oliver, 1992), potato (Laties, 1983), spruce (Cornu et al., 1996), and the eukaryotic microalga Chlamydomonas reinhardtii (Martínez-Rivas and Vega, 1994). Matrix and membrane forms of the enzyme have been detected in potato (Tezuka and Laties, 1983) and pea (McIntosh, 1997). Although it is an allosteric enzyme that exhibits sigmoidal kinetics with respect to isocitrate (Cox and Davies, 1967; McIntosh and Oliver, 1992) and is activated in vitro by ABA (Tezuka et al., 1990), the regulatory importance of NAD-IDH in photosynthetic organisms is still under debate.To elucidate the regulatory significance of NAD-IDH in photosynthetic organisms and its apparent contribution to the 2-oxoglutarate supply for ammonium assimilation, we have purified and characterized the NAD-IDH from C. reinhardtii.  相似文献   

9.
Mitochondria were isolated from autotrophically grown Chlamydomonas reinhardtii cell-wall-less mutant CW 92. The cells were broken by vortexing with glass beads, and the mitochondria were collected by differential centrifugation and purified on a Percoll gradient. The isolated mitochondria oxidized malate, pyruvate, succinate, NADH, and [alpha]-ketoglutarate. Respiratory control was obtained with malate (2.0) and pyruvate (2.2) but not with the other substrates. From experiments with KCN and salicylhydroxamic acid, it was estimated that the capacity of the cytochrome pathway was at least 100 nmol O2 mg-1 protein min-1 and the capacity of the alternative oxidase was at least 50 nmol O2 mg-1 protein min-1. A low sensitivity to oligomycin indicates some difference in the properties of the mitochondrial ATPase from Chlamydomonas as compared to higher plants.  相似文献   

10.
In this study we have isolated the chlorophyll a/b-binding proteins from a photosystem I preparation of the green alga Chlamydomonas reinhardtii and characterized them by N-terminal sequencing, fluorescence, and absorption spectroscopy and by immunochemical means. The results indicate that in this organism, the light-harvesting complex of photosystem I (LHCI) is composed of at least seven distinct polypeptides of which a minimum number of three are shown to bind chlorophyll a and b. Both sequence homology and immunological cross-reactivity with other chlorophyll-binding proteins suggest that all of the LHCI polypeptides bind pigments. Fractionation of LHCI by mildly denaturing methods showed that, in contrast to higher plants, the long wavelength fluorescence emission typical of LHCI (705 nm in C. reinhardtii) cannot be correlated with the presence of specific polypeptides, but rather with changes in the aggregation state of the LHCI components. Reconstitution of both high aggregation state and long wavelength fluorescence emission from components that do not show these characteristics confirm this hypothesis.  相似文献   

11.
12.
R Debuchy  S Purton    J D Rochaix 《The EMBO journal》1989,8(10):2803-2809
The argininosuccinate lyase (ASL) gene of Chlamydomonas reinhardtii has been cloned using four oligonucleotide probes corresponding to highly conserved regions of the ASL polypeptide sequence. The identity of the gene was confirmed by partial sequencing. It is unique, contains several introns and spans a region less than 7.8 kb that includes highly repetitive sequences. Using a particle gun, a reliable nuclear transformation system has been established by complementing three mutants deficient in ASL activity with the wild-type ASL gene. Analysis of the transformants reveals variable patterns of integration of the transforming DNA into the nuclear genome. Previous work has mapped the mutations in the mutants arg2 and arg7 to either end of the ARG7 locus 1.0 to 1.6 recombination map units apart. Our transformation results show that these two mutations are located within a region of 7.8 kb. This allows for the first correlation of the recombination map and the molecular map at the ARG7 locus and indicates a high recombination frequency in this region of the nuclear genome.  相似文献   

13.
Polyclonal antibodies were raised in rabbits against the C. reinhardtii cell wall lytic enzyme, autolysin, which dissolves the cell wall of gametes prior to cell fusion. The purified immunoglobulins react with both the native and the deglycosylated forms of this gametic autolysin and specifically inhibit enzyme activity. In addition, the immunoglobulins selectively detect the gametic autolysin in immunoblots of crude extracts and do not cross-react with the autolysin of the vegetative cells. The antibodies have been used to study the time of synthesis of the enzyme during gametogenesis and to compare gametic autolysins of different strains of Chlamydomonas.  相似文献   

14.
Potassium Fluxes in Chlamydomonas reinhardtii (II. Compartmental Analysis)   总被引:2,自引:2,他引:0  
Malhotra B  Glass A 《Plant physiology》1995,108(4):1537-1545
42K+ and 86Rb+ were used to determine the subcellular distribution of potassium in Chlamydomonas reinhardtii by compartmental analysis. In both wild type and a mutant strain, three distinct compartments (referred to as I, II, and III) were apparent. Using 42K+, we found that these had half-lives for K+ exchange of 1.07 min, 12.8 min, and 2.9 h, respectively, in wild-type cells and 0.93 min, 14.7 min, and 9.8 h, respectively, for the mutants. Half-lives were not significantly different when 86Rb+ was used to trace K+. Compartments I and II probably correspond to the cell wall and cytoplasm, respectively. Based on the lack of a large central vacuole in Chlamydomonas, the effect of a dark pretreatment on the kinetic properties of compartment III and the similarity between the [K+] of compartment III and that of isolated chloroplasts, this slowly exchanging compartment was identified as the chloroplast. Growth of wild-type cells at 100 [mu]M (instead of 10 mM K+) caused no change of cytoplasmic [K+] but reduced chloroplast [K+] very substantially. The mutants failed to grow at 100 [mu]M K+.  相似文献   

15.
16.
A novel supercomplex of Photosystem I (PSI) with light harvesting complex I (LHCI) was isolated from the green alga Chlamydomonas reinhardtii. This novel supercomplex is unique as it is the first stable supercomplex of PSI together with its external antenna. The supercomplex contains 256 chlorophylls per reaction center. The supercomplex was isolated under anaerobic conditions and may represent the State II form of the photosynthetic unit. In contrast to previously reported supercomplexes isolated in State I, which contain only 4 LHC I proteins, this supercomplex contains 10-11 LHC I proteins tightly bound to the PSI core. In contrast to plants, no LHC II is tightly bound to the PSI-LHCI supercomplex in State II. Investigation of the energy transfer from the antenna system to the reaction center core shows that the LHC supercomplexes are tightly coupled to the PSI core, not only structurally but also energetically. The excitation energy transfer kinetics are completely dominated by the fast phase, with a near-complete lack of long-lived fluorescence. This tight coupling is in contrast to all reports of energy transfer in PSI-LHCI supercomplexes (in State I), which have so far been described as weakly coupled supercomplexes with low efficiency for excitation energy transfer. These results indicate that there are large and dynamic changes of the PSI-LHCI supercomplex during the acclimation from aerobic (State I) to anaerobic (State II) conditions in Chlamydomonas.  相似文献   

17.
18.
Hyaluronidase from Propionibacterium acnes has been purified 13,000-fold from the culture supernatant to homogeneity (as determined by polyacrylamide disc gel electrophoresis). The molecular weight of the purified enzyme was 85,110 as determined by gel filtration. The purified enzyme had a pH optimum at 6.4, was stable between pH 5 and 5.8 and was completely inactivated after 15 min at 50 degrees C. Preliminary studies suggested that the enzyme is active against chondroitin 4- and 6-sulphates, but not against dermatan sulphate. Analysis by paper chromatography of the reaction products from the degradation of hyaluronic acid by bacterial, testicular and P. acnes enzymes suggested that the P. acnes enzyme is similar in its mode of action to other bacterial hyaluronate lyases. The enzyme from P. acnes may thus be tentatively classified as a hyaluronate lyase.  相似文献   

19.
The nitro analogs of aspartate and argininosuccinate were synthesized and tested as substrates and inhibitors of argininosuccinate synthetase and argininosuccinate lyase, respectively. The Vmax for 3-nitro-2-aminopropionic acid was found to be 60% of the maximal rate of aspartate utilization in the reaction catalyzed by argininosuccinate synthetase. Only the nitronate form of this substrate, in which the C-3 hydrogen is ionized, was substrate active, indicating a requirement for a negatively charged group at the beta carbon. The V/K of the nitro analog of aspartate was 85% of the value of aspartate after correcting for the percentage of the active nitronate species. The nitro analog of argininosuccinate, N3-(L-1-carboxy-2-nitroethyl)-L-arginine, was a strong competitive inhibitor of argininosuccinate lyase but was not a substrate. The pH dependence of the observed pKi was consistent with the ionized carbon acid (pK = 8.2) in the nitronate configuration as the inhibitory material. The pH-independent pKi of 2.7 microM is 20 times smaller than the Km of argininosuccinate at pH 7.5. These results suggest that the tighter binding of the nitro analog relative to the substrate is due to the similarity in structure to a carbanionic intermediate in the reaction pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号