首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen transfer characteristics of a 20-mm O.D. airlift contactor fitted with an oxygen microelectrode were determined by steady-state sulfite oxidation measurements. The volumetric mass transfer coefficient k(L)a was proportional to sparging power input per unit volume raised to a power which varied from 0.41 in water (coalescing bubbles) to 0.76 in NaCl solutions (noncoalescing bubbles). The highest observed k(L)a value was 0.012 s(-1) which is sufficient to aerate Escherichia coli in an NMR spectrometer at moderate to high cell densities, depending on the physiological state of the cells.  相似文献   

2.
Dissolved oxygen (DO) concentration was selected as a principal parameter for translating results of shake flask fermentation of Trichoderma viride (biocontrol fungi) to a fermenter scale. All fermentations were carried out in a 7.5 l automated fermenter with a working volume of 4 l. Fermentation performance parameters such as volumetric oxygen transfer coefficient (k L a), oxygen uptake rate (OUR), rheology, conidia concentration, glucose consumption, soluble chemical oxygen demand, entomotoxicity and inhibition index were measured. The conidia concentration, entomotoxicity and inhibition index were either stable or improved at lower DO concentration (30%). Variation of OUR aided in assessing the oxygen supply capacity of the fermenter and biomass growth. Meanwhile, rheological profiles demonstrated the variability of wastewater during fermentation due to mycelial growth and conidiation. In order to estimate power consumption, the agitation and the aeration requirements were quantified in terms of area under the curves, agitation vs. time (rpm h), and aeration vs. time (lpm h). This simple and novel strategy of fermenter operation proved to be highly successful which can be adopted to other biocontrol fungi.  相似文献   

3.
In most polysaccharide fermentations, the nature of the fermentation broth changes drastically with time and, as a result, the overall oxygen mass transfer coefficient (K(L)a) can vary by orders of magnitude. To obtain a better understanding of this phenomenon, an experimental program was devised to study the respective influence of molecular weight and concentration of dextran solutions on K(L)a. Experiments were conducted in a reciprocating plate bioreactor. This bioreactor uses a stack of perforated plates that is reciprocated axially in the column and it is therefore well suited for mixing viscous liquid broths and providing uniform overall mass transfer coefficients. The variation of K(L)a with the power input per unit volume and the superficial gas velocity were obtained for three ranges of molecular weights and five concentrations of dextran. In every medium, two regimes of operation were observed as a function of the power input per unit volume: a first regime, at low power inputs per unit volume where K(L)a remains constant until a threshold of power input is attained; and a second regime, which is characterized by a steep increase of K(L)a as a function of the power input per unit volume. The presence of dissolved biological macromolecules, not only because of their effect on the rheology of the medium but also because their effect on the gas-liquid interface, has a significant impact on K(L)a. It was found that, generally, small concentrations of polysaccharide favor oxygen mass transfer despite the increase in medium viscosity. However, the respective influence of polysaccharide concentration and molecular weight was different for the two regimes of operation. (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
Effects of agitation and aeration rates on volumetric oxygen transfer coefficient and oxygen uptake rate of a riboflavin broth containing Ashbya gossypii were investigated in three batch, sparged, and agitated fermentors having the working volumes of 0.42, 0.85, and 2.5 l. The change of oxygen uptake rate with time at 250 rev min−1 stirring and vvm aeration rates was shown. The volumetric oxygen transfer coefficients and maximum oxygen uptake rates obtained have been correlated to mechanical power inputs per unit volume of the fermentation broth and the superficial air velocities.  相似文献   

5.
Summary The production ofBordetella pertussis extracytoplasmic filamentous haemagglutinin (FHA) and pertussis toxin (PT) in a bioreactor under stirring conditions was studied in order to investigate the effect of hydromechanical forces on yields of both antigens. It was shown that FHA loses its haemagglutinin activity when the power transmitted by the agitator and the aerator per unit volume increases, whereas PT production is not affected. The loss of FHA activity can be explained by the action of shear forces on the filamentous structure of this antigen.Nomenclature C* dissolved oxygen saturation concentration - C1 dissolved oxygen concentration - D impeller diameter - power transmitted by the agitator and the aerator per unit of liquid volume - Em maximum local energy dissipation rate per unit of liquid volume - KLa volumetric oxygen transfer coefficient - N impeller speed - Pg power input in aerated system - qO2m maximum specific oxygen consumption rate - Re Reynold number (D2N /) - VVM volume of air per volume of fermentation broth per minute - Xm maximum of biomass concentration - o Kolmogorov-microscale - fermentation broth viscosity - fermentation broth kinematic viscosity - fermentation broth density - expt experiment  相似文献   

6.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.  相似文献   

7.
Summary The biomass yields (y) and COD reduction efficiencies (η) of a whey fermentation by Kluyveromyces fragilis were studied in a 100-1 fermenter at various stirrer speeds and lactose concentrations, and compared to those obtained in 10-1 and 15-1 fermenters at constant values of the oxygen transfer coefficient (kLa) and air velocity. The empirical models previously constructed by using the 15-1 fermenter data could be used to predict the yields on the other scales by calculating for each run the 15-1 fermenter which would provide the same oxygen transfer coefficient measured by the sulphite method on each fermenter under study. To make this model independent of stirrer speeds used in each generic fermenter, the effect of aeration and mixing was incorporated into an overall parameter (kLa) and the values of y and η were correlated only with temperature, lactose level and kL a, since these variables were approximately orthogonal. The validity of this model was finally checked against the yields reported by Wasserman et al. (1961) in a 6-m3 fermenter, thus confirming the capability of the model to provide a reliable basis for further scale-up on the production scale.  相似文献   

8.
The growth and production pattern of phytase by a filamentous fungus, Aspergillus niger van Teighem, were studied in submerged culture at varying agitation rates and controlled and uncontrolled pH conditions. Allowing the initial culture to grow under neutral condition with subsequent decline in pH resulted in increased phytase productivity. A maximum of 141 nkat/mL phytase was obtained when the broth pH was maintained at pH 2.5 as compared to 17 nkat/mL units at controlled pH 5.5. The culture morphology and rheological properties of the fermentation broth significantly varied with the agitation rate. The volumetric oxygen transfer coefficient was determined at different phases of fungal growth during batch fermentation using static gassing out and dynamic gassing out methods. The oxygen transfer coefficient (k(L)a) of the fermenter was found to be 125 h(-)(1) at 500 rpm as compared to 38 h(-)(1) at 200 rpm. The oxygen transfer rates at different phases of growth were significantly affected by cell mass concentration and fungal morphology. During the course of fermentation there was a gradual decline of k(L)a from 97 h(-)(1) on day 2 to 63 h(-)(1) on day 6 of fermentation, after which no significant change was observed. The degree of agitation considerably influenced the culture morphology where shear thinning of filamentous fungus was observed with the increase in agitation.  相似文献   

9.
Measurements of oxygen transfer were made during cultivation of the yeast Saccharomyces cerevisiae in a 90–250 litre working volume concentric tube airlift fermenter. Results demonstrated that the rate of oxygen transfer varies with position in the fermenter, being higher in the riser and top-section than in the downcomer and lowest near the base of the fermenter. The time for liquid circulation was generally smaller than the time constant for oxygen transfer (1/kLa) indicating that the rate of oxygen transfer was slow compared to the rate of liquid movement. Measured dissolved oxygen concentrations therefore did not represent the equilibrium arising from the balance between the rates of oxygen transfer and oxygen depletion. Hence measuredk L a values were not representative of local oxygen transfer conditions but instead were indicators of the rate of mass transfer the liquid flow had encountered prior to reaching the point of measurement. Generally the individual rates of oxygen transfer in the vessel were found to increase with increasing vessel height.  相似文献   

10.
The maintenance of constant interfacial area per unit volume is a key parameter for the successful scale-up of two-liquid phase bioconversion processes. To date, however, there is little published information on the hydrodynamics of such systems and a suitable basis for scale-up has yet to be defined and verified. Here we report power input and hydrodynamic data for a whole-cell bioconversion process using resting cells of Rhodococcus R312 to catalyse the hydration of a poorly water-soluble substrate 1,3-dicyanobenzene (1,3-DCB). Experiments were performed in geometrically similar 3-L and 75-L reactors, each fitted with a three-stage Rushton turbine impeller system. The two-phase system used comprised of 20% v/v toluene dispersed in 0.1 M aqueous phosphate buffer containing up to 10 g(ww) x L(-1) of resuspended biocatalyst and 20 g x L(-1) 1,3-DCB. The power input to the 3-L reactor was first determined using an air-bearing technique for both single-phase and two-phase mixing. In both cases, the power number attained a constant value of 11 at Re>10,000, while the measured power inputs were in the range 0.15-3.25 kW x m(-3). Drop size distributions and Sauter mean drop diameters (d(32)) were subsequently measured on-line in both reactors, using an in-situ light-backscattering technique, for scale-up on the basis of either constant power input per unit volume or constant tip speed. At both scales d(32) decreased with increasing agitation rate, while the drop size distributions obtained were log-normal. All the measured d(32) values were in the range of 30-50 microm, with the lowest values being obtained in systems with biocatalyst present. In all cases, constant power input per unit volume was found to be the most suitable basis for scale-up. This gave virtually identical d(32) values and drop size distributions at both scales. A number of correlations were also identified that would allow reasonable prediction of d(32) values for various agitation rates at each scale. While the results obtained are for a particular phase system, the scale-down methodology presented here would allow the rapid evaluation of other bioconversion processes in the 3-L reactor with a 25-fold reduction in scale. In this way, potential problems that might be encountered at the larger scale, such as the carryover of antifoam from the fermentation stage, could be quickly and efficiently identified.  相似文献   

11.
The growth of microorganisms in fermentations where oil had been maintained as the continuous phase was examined to determine whether advantage could be gained from the increased solubility of oxygen in hydrocarbon. Although cell concentrations were highest in the aqueous phase of oil-continuous systems, due to the large oil fraction, productivities achieved per unit fermenter volume were generally equivalent to those obtained from water-continuous systems. With the oil-continuous emulsions, the power requirement for aeration and mixing was less, and phase reversal resulted in a threefold concentration of cells in the aqueous medium, thereby facilitating their recovery.  相似文献   

12.
The cholesterol lowering drug, Lovastatin (Mevacor), acts as an inhibitor of HMGCoA reductase, and is produced from an Aspergillus terreus fermentation.Pilot scale studies were carried out in 800 liter fermenters to determine the effects of cell morphology on the oxygen transport properties of this fermentation. Specifically, parallel fermentations giving (i) filamentous mycelial cells, and (ii) discrete mycelial pellets, were quantitatively characterized in terms of broth viscosity, availability of dissolved oxygen, oxygen uptake rates and the oxygen transfer coefficient under identical operating conditions.The growth phase of the fermentation, was operated using a cascade control strategy which automatically changed the agitation speed with the goal of maintaining dissolved oxygen at 50% saturation. Subsequently stepwise changes were made in agitation speed and aeration rate to evaluate the response of the mass transfer parameters (DO, OUR, and k L a). The results of these experiments indicate considerable potential advantages to the pellet morphology from the standpoint of oxygen transport processes.List of Symbols DO % sat. Dissolved oxygen concentration - k L a h–1 Gas-liquid mass transfer coefficient - OUR mmol/dm3h Oxygen uptake rate - P/V KW/m3 Agitator power per unit volume - V s m/s Superficial air velocity - app cP Apparent viscosity  相似文献   

13.
Detailed batch kinetics ofCandida lipolytica 4-1 onn-hexadecane for varying dispersed phase volume from 0.5 to 5% v/v is presented. All batch growth curves exhibited a linear growth region, indicating a substrate uptake limit. System productivities derived from the linear region were correlated to the dispersed phase volume. The correlation coefficient was identical with that obtained on gas oil. This implies that a correlation coefficient of interfacial area to the dispersed phase volume is identical for both systems. Dissolved oxygen profile and uptake of oxygen from gas phase were also measured. The oxygen uptake rate, volumetric oxygen transfer rate and oxygen demand (requirement) were calculated by means of the balance method. Under limiting dissolved oxygen concentration the maximal oxygen transfer of the fermenter was assessed.  相似文献   

14.
The physiological response of erythromycin fermentation scale-up from 50 L to 132 m3 scale was investigated. A relatively high oxygen uptake rate (OUR) in early phase of fermentation was beneficial for erythromycin biosynthesis. Correspondingly, the maximal consistency coefficient (K) reflecting non-Newtonian fluid characteristics in 50 L and 132 m3 fermenter also appeared in same phase. Fluid dynamics in different scale bioreactor was further investigated by real-time computational fluid dynamics modeling. The results of simulation showed that the impeller combination in 50 L fermenter could provide more modest flow field environment compared with that in 132 m3 fermenter. The decrease of oxygen transfer rate (OTR) in 132 m3 fermenter was the main cause for impairing cell physiological metabolism and erythromycin biosynthesis. These results were helpful for understanding the relationship between hydrodynamic environment and physiological response of cells in bioreactor during the scale-up of fermentation process.  相似文献   

15.
Around 150 lipase producing bacterial isolates were screened from the local soils enriched with oil. Citrobacrer freundii IIT-BT L139, an isolated microbial strain, produced lipase that had high activity (8.8 U/ml) at pH 9.0 and 40 degrees C. The 16S rDNA phylogenetic studies showed that Citrobacter freundii belongs to the family Enterobacteriaceae and later confirmed by the microbial identification. Suitable C and N sources for lipase production were deduced to be starch and peptone-urea, respectively. In a controlled fermenter (1 L), the lipase activity was found to increase by 36% (12 Uml(-1)). The variation of lipase activity, pH and dissolved oxygen (DO) during growth of the organism in the controlled batch fermenter were monitored. The rheological characteristics of the fermentation broth indicated that it behaved like a Newtonian fluid throughout the fermentation. The fermentation time was comparatively short (60 h). The lipase was also found to be substantially resistant to common detergents. This lipase was, thus, characterized as alkaline, thermostable and solvent stable, which was essentially desirable in pharmaceutical, detergent and other industrial applications or production.  相似文献   

16.
A cyclone reactor for microbial fermentation processes was developed with high oxygen transfer capabilities. Three geometrically similar cyclone reactors with 0.5?l, 2.5?l and 15?l liquid volume, respectively, were characterized with respect to oxygen mass transfer, mixing time and residence time distribution. Semi-empirically correlations for prediction of oxygen mass transfer and mixing times were identified for scale-up of cyclone reactors. A volumetric oxygen mass transfer coefficient k L a of 1.0?s?1 (available oxygen transfer rate with air: 29?kg?m?3?h?1) was achieved with the cyclone reactor at a volumetric power input of 40?kW?m?3 and an aeration gas flow rate of 0.2?s?1. Continuous methanol controlled production of formate dehydrogenase (FDH) with Candida boidinii in a 15?l cyclone reactor resulted in more than 100% improvement in dry cell mass concentration (64.5?g?l?1) and in about 100% improvement in FDH space-time yield (300?U?l?1?h?1) compared to steady state results of a continuous stirred tank reactor.  相似文献   

17.
There are many scaling formulas that predict the oxygen mass transfer coefficient as k(L).a = constant.(Hp/V)(alpha)Vs(beta) Exponents alpha and beta frequently are scale dependent themselves. A general formula has been derived from the work of Calderbank,(1) Miller,(2) and Tilton,(3) resulting in k(L).a = C(1) phi + C(2) log (Pm/V) phi where phi equals the gas-holdup fraction and Pm/V equals the effective mechanical power input per unit of volume. This formula is consistent with the formula of Westerterp(4) modified by Miller.(2) Gas holdup can be predicted in several ways. Gas-sparged isothermal expansion power input, used for predicting phi, demonstrates that scaling can be done by using either superficial air velocity or volume per volume per minute for aeration.The importance of mixing in replenishing oxygen at the boundary layers of microorganisms will be assessed and compared with the k(L).a as the oxygen transfer ratelimiting step.  相似文献   

18.
Summary The scale-up of a whey fermentation byKluyveromyces fragilis was carried out in order to reproduce on a larger scale (100-l fermenter) the results obtained on a smaller scale (15-l fermenter).Using a standard procedure for inoculum development and medium pasteurization, the effects of mixing and lactose concentration on yeast growth, lactose consumption, COD reduction and dissolved oxygen have been studied.The most successful operation for this fermentation was found to be associated with high stirring rates and low lactose concentrations, since the process was controlled by both oxygen and lactose concentrations.  相似文献   

19.
L-亮氨酸发酵过程氮源反馈与非反馈控制的初步研究   总被引:3,自引:0,他引:3  
氮源可直接影响氨基酸发酵过程中菌体生长与氨基酸生成。但是关于氨基酸发酵过程中氮源控制的研究报道并不多。本文作者在L-亮氨酸发酵过程碳源流加研究及动力学特征分析基础上,比较了几种非反馈型、反馈型补加硫酸铵的发酵结果,提出了较佳的控制方法。  相似文献   

20.
In conventional shaken culture system, control of oxygen supply is performed by changing liquid volume in flasks and it necessarily introduces variation in the effectiveness of agitation and in the partial pressure of carbon dioxide. In jar or tank culture system, also, the changes in mechanical agitation and in the flow rate of air for control of aeration induce similar problems. It is impossible, therefore, to isolate the effects of oxygen on microbial metabolism from these accompanying ones. Hence, there is a basic requirement of making clear distinction among them, and in this paper the effects of agitation and carbon dioxide on product formation are presented in glutamic acid fermentation using the apparatus of controlling the level of dissolved oxygen throughout the fermentation.

To obtain fundamental knowledge required for attaining adequate aeration, the rate of oxygen demand in glutamic acid fermentation was discussed in connection with its fermentation rates. On the basis of specific rates, rates of change per unit mass of cells, glutamic acid fermentation was found to fall in the process pattern of Gaden’s type II, in which a constant rate of oxygen demand was sustained for a considerable time. On the basis of volumetric rates, rates of change per unit volume of broths, oxygen demand was recognized to be correlated with growth, sugar utilization and product formation, and it was pointed out particularly that the oxygen demand was closedly related with sugar utilization. In the particular cases where rapid utilization of sugar occurred, therefore, oxygen deficiency was liable to be evoked being unable to fill the growing oxygen demand. This finding might be useful for scale-up studies or process design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号