首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi‐locus approach was used to examine the DNA sequences of 10 nominal species of blackfly in the Simulium subgenus Gomphostilbia (Diptera: Simuliidae) in Malaysia. Molecular data were acquired from partial DNA sequences of the mitochondria‐encoded cytochrome c oxidase subunit I (COI), 12S rRNA and 16S rRNA genes, and the nuclear‐encoded 18S rRNA and 28S rRNA genes. No single gene, nor the concatenated gene set, resolved all species or all relationships. However, all morphologically established species were supported by at least one gene. The multi‐locus sequence analysis revealed two distinct evolutionary lineages, conforming to the morphotaxonomically recognized Simulium asakoae and Simulium ceylonicum species groups.  相似文献   

2.
3.
Mammalian testis contains two forms of cytochrome c, one identical to the form found in somatic tissues and a second that is expressed in a stage-specific manner during spermatogenic differentiation. We have isolated both rat and mouse cDNA clones and the rat gene encoding the testis-specific cytochrome c and determined their DNA sequences. The testicular variant displays a number of notable differences with its somatic counterpart. 1) In contrast to the multipseudogene family derived from mammalian somatic cytochrome c genes, the testis gene is single-copy in genomic DNA with no detectable pseudogenes. 2) The rat testis gene is approximately 7 kilobases (kb) long with three introns totaling nearly 6.5 kb whereas the two introns dividing the 2.1-kb somatic gene occupy only 0.9 kb. Introns differ in position as well as size. 3) The testicular variant has a longer 5'-untranslated leader (230 versus 70 base pairs for the somatic gene) with an upstream open reading frame of 129 base pairs beginning with an AUG in a favorable translational context. 4) A single polyadenylation site in the testicular mRNA (approximately 900 nucleotides) contrasts with the three functionally equivalent sites observed in rat somatic messages. 5) Finally, rat and mouse testis cytochromes c differ at 4 amino acid residues as opposed to the complete sequence identity found in the somatic proteins suggesting a shorter unit evolutionary period for these molecules. These observations are consistent with a duplication of an ancestral cytochrome c gene leading to the emergence of novel structural features and regulatory properties likely associated with the striking tissue specificity of the testicular cytochrome c.  相似文献   

4.
5.
As part of our goal to reconstruct human evolution at the DNA level, we have been examining changes in the biochemical machinery for aerobic energy metabolism. We find that protein subunits of two of the electron transfer complexes, complex III and complex IV, and cytochrome c, the protein carrier that connects them, have all undergone a period of rapid protein evolution in the anthropoid lineage that ultimately led to humans. Indeed, subunit IV of cytochrome c oxidase (COX; complex IV) provides one of the best examples of positively selected changes of any protein studied. The rate of subunit IV evolution accelerated in our catarrhine ancestors in the period between 40 to 18 million years ago and then decelerated in the descendant hominid lineages, a pattern of rate changes indicative of positive selection of adaptive changes followed by purifying selection acting against further changes. Besides clear evidence that adaptive evolution occurred for cytochrome c and subunits of complexes III (e.g., cytochrome c(1)) and IV (e.g., COX2 and COX4), modest rate accelerations in the lineage that led to humans are seen for other subunits of both complexes. In addition the contractile muscle-specific isoform of COX subunit VIII became a pseudogene in an anthropoid ancestor of humans but appears to be a functional gene in the nonanthropoid primates. These changes in the aerobic energy complexes coincide with the expansion of the energy-dependent neocortex during the emergence of the higher primates. Discovering the biochemical adaptations suggested by molecular evolutionary analysis will be an exciting challenge.  相似文献   

6.
Isolation and structure of a rat cytochrome c gene   总被引:18,自引:0,他引:18  
We screened a Charon 4A-rat genomic library using the cloned iso-1 cytochrome c gene from Saccharomyces cerevisiae as a specific hybridization probe. Eight different recombinant phages homologous to a coding region subfragment of the yeast gene were isolated. Nucleotide sequence analysis of a 0.96-kilobase portion of one of these established the existence of a gene coding for a cytochrome c identical in amino acid sequence with that of mouse. The rat polypeptide chain sequence had not previously been determined. In contrast to the yeast iso-1 and iso-2 cytochrome c genes, neither of which have introns, the rat gene contains a single 105-base pair intervening sequence interrupting glycine codon 56. The overall nucleotide sequence homology between cytochrome c genes of yeast and rat is about 62%, with areas of greater homology coinciding with four regions of functionally constrained amino acid sequences. Two of these regions displayed 85-90% DNA sequence homology, including the longest consecutive homologous stretch of 14 nucleotides, corresponding to amino acids 47-52 of the rat protein. Somewhat less homology was observed in the DNA-specifying amino acids 70-80, which are invariant residues in most known cytochrome c molecules. Thermal dissociation of the yeast probe from the homologous rat DNA was at about 58 degrees C in 0.39 M Na+. These results establish that cytochrome c genes may be isolated by interspecies hybridization between widely divergent organisms.  相似文献   

7.
8.
We provide here a list of 154 P450 genes and seven putative pseudogenes that have been characterized as of October 20, 1990. These genes have been described in a total of 23 eukaryotes (including nine mammalian and one plant species) and six prokaryotes. Of 27 gene families so far described, 10 exist in all mammals. These 10 families comprise 18 subfamilies, of which 16 and 14 have been mapped in the human and mouse genomes, respectively; to date, each subfamily appears to represent a cluster of tightly linked genes. We propose here a modest revision of the initially proposed (Nebert et al., DNA 6, 1-11, 1987) and updated (Nebert et al., DNA 8, 1-13, 1989) nomenclature system based on evolution of the superfamily. For the gene we recommend that the italicized root symbol CYP for human (Cyp for mouse), representing cytochrome P450, be followed by an Arabic number denoting the family, a letter designating the subfamily (when two or more exist), and an Arabic numeral representing the individual gene within the subfamily. A hyphen should precede the final number in mouse genes. We suggest that the human nomenclature system be used for other species. This system is consistent with our earlier proposed nomenclature for P450 of all eukaryotes and prokaryotes, except that we are discouraging the future use of cumbersome Roman numerals.  相似文献   

9.
Analysis of total chicken DNA by genomic blot hybridization indicates that only one cytochrome c gene exists in the chicken genome. The two alleles of this single cytochrome c gene have been isolated from a Charon 4A-chicken genomic library. This isolation made use of the yeast CYC1 cytochrome c gene as a specific hybridization probe. The 2 chicken alleles, CC9 and CC10, have been sequenced. The amino acid sequence predicted by these 2 alleles is identical, and agrees with the published chicken cytochrome c protein sequence. The flanking regions of these 2 alleles exhibit approximately 1% divergence, indicating a very limited polymorphism. Comparative sequence analysis with the flanking regions of previously isolated cytochrome c genes (yeast and rat) indicate no significant regions of homology. The presence of only one cytochrome c-like sequence in the chicken genome is in striking contrast with mammalian genomes, which contain as many as 20-30 cytochrome c-like sequences.  相似文献   

10.
11.
To understand the molecular mechanism of gibberellin-dependent gene regulation, the effect of three phosphatase inhibitors on the germination of rice seeds and the expression of a target gene, the -amylase gene, Osamy-c, were measured. We found that okadaic acid, microcystin-LR, and calyculin A, which are known to specifically inhibit Ser/Thr phosphatases 1 and 2A, strongly inhibit the expression of the Osamy-c and may be involved in the germination of rice seeds.The protein phosphatase enzyme activity assays showed that there is no obvious effect of GA3 on total PP1/PP2A activities. To further understand the possible role of protein phosphatases 1 and 2A in the GA-dependent expression of Osamy-c, we isolated cDNA clones encoding protein phosphatase 1 and protein phosphatase 2A from a rice aleurone cDNA library. These were designated OsPP1c and OsPP2Ac, respectively. Comparison of the deduced amino acid sequences of OsPP1c and OsPP2Ac with the catalytic subunits of PP1 or PP2A of rabbit skeletal muscle, Arabidopsis thaliana, maize and Brassica napus showed that the catalytic subunit sequences of PP1 or PP2A among these organisms are highly conserved (73% to 90% similarity). Genomic Southern blot analysis indicated that there are only one or two copies of OsPP1c genes and more than two copies of OsPP2Ac genes in the rice genome. Northern blot analysis showed that OsPP1c and OsPP2Ac genes are expressed in several organs of rice, including seed, shoot and root. We also showed by using 3 gene-specific probes of OsPP1c and OsPP2Ac cDNA, that the expression of neither gene is regulated by GA. Taken together, our results suggest that protein phosphatases PP1 or PP2A are involved in the GA-dependent expression of the rice Osamy-c gene, though the PP1 or/and PP2A enzymatic activities as well as mRNA levels do not increase upon GA3 treatment.  相似文献   

12.
13.
We isolated 11 rice genes homologous to the genes encoding auxin response factors (ARFs) in Arabidopsis. All of the genes encoded a well-conserved amino acid sequence in the N-terminal region, which is considered to be a DNA-binding domain (DBD). Phylogenetic analysis based on comparison of the DBDs indicated that rice has one or two closely related orthologs corresponding to a given respective ARF gene in Arabidopsis. We also analyzed the amino acid sequences of another conserved domain in the C-terminal conserved domain (CTD), which was shared by almost all the rice ARFs, with the exception of OsETTIN1 and OsETTIN2. These results agreed well with the evolutionary relationship deduced from the DBD comparison. In contrast to many ARFs, OsETTIN1 and OsETTIN2 do not contain the conserved C-terminal domain, but do share another consensus motif that is also found in Arabidopsis ETTIN. All of the above observations indicate that rice has functionally diversified ARF genes whose structures and functions correspond to those of various Arabidopsis ARFs, with one or two rice ARFs corresponding to a given Arabidopsis ARF. Thus, auxin signal transduction mechanisms may be well conserved between monocot and dicot plants.  相似文献   

14.
15.
While transposons have traditionally been viewed as genomic parasites or "junk DNA," the discovery of transposon-derived host genes has fueled an ongoing debate over the evolutionary role of transposons. In particular, while mobility-related open reading frames have been known to acquire host functions, the contribution of these types of events to the evolution of genes is not well understood. Here we report that genome-wide searches for Mutator transposase-derived host genes in Arabidopsis thaliana (Columbia-0) and Oryza sativa ssp. japonica (cv. Nipponbare) (domesticated rice) identified 121 sequences, including the taxonomically conserved MUSTANG1. Syntenic MUSTANG1 orthologs in such varied plant species as rice, poplar, Arabidopsis, and Medicago truncatula appear to be under purifying selection. However, despite the evidence of this pathway of gene evolution, MUSTANG1 belongs to one of only two Mutator-like gene families with members in both monocotyledonous and dicotyledonous plants, suggesting that Mutator-like elements seldom evolve into taxonomically widespread host genes.  相似文献   

16.
A novel procedure for testing the relative rates of evolution is described. The procedure, the distance-matrix rate test, consists of creating a graph that displays two complete distance matrices for two different genes derived from the same group of species, an approach made practical by numerous whole genomic sequences. The results in this paper show that the molecular clock of ribosomal RNA from Eukaryotes is uniquely accelerated and highly variable while those of Archaea and Bacteria are not. This idiosyncratic eukaryotic rRNA evolution is not observed with four different protein genes. The distance matrix rate test consists of plotting the distance of one gene (from two different species) against the distance of a second gene (from the same pair of species) in the form of a simple X-Y plot. Because it is not possible to compute variances (or co-variances in this case) that can be meaningfully compared to expectations from a Poisson process, the test does not permit calculations of an index of dispersion. In place of this, equations are given for the 95% confidence limits expected for a Poisson process. The test was applied to the proteins rpsl1 and rp114, as one example, and to rps11 and ssu rRNA as a second example. In addition, the cytochrome c and cytochrome c oxidase evolution from a larger group of Eukaryotes are compared to each other and that of the ssu rRNA. This graphical test shows that the evolution of the four proteins and the archael and bacterial ssu rRNA's are consistent with a Poisson process since last common ancestor. The distance-matrix rate test that is introduced in this study needs to make no assumptions regarding evolutionary rates, divergence times, or phylogenetic relationships.  相似文献   

17.
Summary We have isolated a cytochrome c gene fromArabidopsis thaliana (cv. Columbia), which is the first cytochrome c gene to be cloned from a higher plant. Genomic DNA blot analysis indicates that there is only one copy of cytochrome c inArabidopsis. The gene consists of three exons separated by two introns. Gene features such as regulatory regions, codon usage, and conserved splicing-specific sequences are all present and typical of dicotyledonous plant nuclear genes. We have constructed phenograms and cladograms for cytochrome c amino acid sequences and histone H3, alcohol dehydrogenase, and actin DNA sequences. For both cytochrome c and histone H3,Arabidopsis clusters poorly with other higher plants. Instead, it clusters withNeurospora and/or the yeasts. We suggest that perhaps this observation should be considered when usingArabidopsis as a model system for higher plants.  相似文献   

18.
Upper internode elongation in rice is an important agronomic trait. Well-known mutants with an elongated uppermost internode (eui) are important germplasms for developing unsheathed-panicle male-sterile lines in hybrid rice breeding. We finely mapped the eui1 gene and identified its candidate gene using in silico analysis based on previous research work and rice genomic sequence data. The rice eui1 gene was mapped to two overlapping BAC clones, OSJNBa0095J22 and OSJNBb0099O15, between the markers AC40 and AC46, that were 0.64 cM apart and spanned approximately 152 kb. A simple sequence repeat (SSR) marker AC41 that cosegregated with eui1 was located in an intron of a putative cytochrome P450-related gene. In silico analysis suggested that this encoded the cytochrome CYP714D1. Allelic sequencing confirmed that EUI1 corresponded to this P450 gene. A gamma ray-induced eui1 mutant carried a deletion in exon II of the EUI1 gene, and resulted in a frame-shift deletion that produced a truncated polypeptide. We conclude that the EUI1 gene controlling the upper internode elongation in rice is 9804 bp long, and comprises two exons and one intron. The length of the cDNA is 1931 bp containing a 1734 bp ORF, a 110 bp 5′-UTR and a 87 bp 3′-UTR. The ORF encodes an unknown 577 amino acid functional protein, that appears to be a member of the cytochrome P450 family. Hongli Ma, Shubiao Zhang: These authors contributed equally to this work  相似文献   

19.
Gene order and content differ among homologous regions of closely related genomes. Similarities in the expression profiles of physically adjacent genes suggest that the proper functioning of these genes depends on maintaining a specific position relative to each other. To better understand the results of the interaction of these two genomic forces, convergent, divergent, and tandem gene pairs in rice and sorghum, as well as their homologs in rice, sorghum, maize, and Brachypodium were analyzed. The status of each pair in all four species: whether it was conserved, inverted, rearranged, or missing homologs was determined. We observed that divergent gene pairs had lower rates of conservation than convergent or tandem pairs, but higher rates of rearranged pairs and missing homologs in maize than in any other species. We also discovered species-specific gene pairs in rice and sorghum. In rice, gene pairs with strongly correlated expression levels were conserved significantly more often than those with little or no correlation. We assigned three types of gene pair to one of 14 possible evolutionary history categories to uncover their evolutionary dynamics during the evolution of grass genomes.  相似文献   

20.
R C Scarpulla  R Wu 《Cell》1983,32(2):473-482
We determined the nucleotide sequences of three nonallelic cytochrome c genes (from recombinant clones Ch4A-RC5, 6 and 8) isolated from the rat cytochrome c gene family. In contrast with a fourth gene (from Ch4A-RC4), which has an intron and correctly encodes rat cytochrome c, these three appear to be pseudogenes and resemble mRNA molecules in two respects: they are all missing the intron of clone 4, and sequence homology with clone 4 in their 3' noncoding regions abruptly ends at two different A-rich tracts reminiscent of poly(A) tails. We also detect three cytochrome c mRNAs of sizes 1400, 1100 and 700 nucleotides in several tissues of the adult rat. The size differences among the mRNAs can be accounted for by length heterogeneity in their 3' noncoding regions. Two of the 3' ends map to the two points where the mRNA-like genes diverge from clone 4 at poly(A) tracts. Furthermore, short direct repeats flank the genes of clones 5, 6 and 8 at the positions where their sequences diverge. The observations suggest that these members of the cytochrome c multigene family may arise through insertion into the genome of DNA copies of cytochrome c mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号